Dispersão de Rayleigh

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Text document with red question mark.svg
Este artigo ou secção contém uma ou mais fontes no fim do texto, mas nenhuma é citada no corpo do artigo, o que compromete a confiabilidade das informações. (desde julho de 2011)
Por favor, melhore este artigo introduzindo notas de rodapé citando as fontes, inserindo-as no corpo do texto quando necessário.
A dispersão de Rayleigh causa um avermelhamento do céu no pôr do Sol

A dispersão de Rayleigh (em homenagem a Lord Rayleigh) é a dispersão da luz ou qualquer outra radiação electromagnética por partículas muito menores que o comprimento de onda dos fótons dispersados. Ocorre quando a luz viaja por sólidos e líquidos transparentes, mas se observa com maior frequência nos gases. A dispersão de Rayleigh da luz solar na atmosfera é a principal razão pela qual o céu é azul.

Se o tamanho das partículas é maior que o comprimento de onda, a luz não se decompõe em suas componentes cromáticas e todos os comprimentos de onda são igualmente dispersados, motivo pelo qual, ao atravessar uma nuvem, esta se vê como branca; o mesmo ocorrendo quando atravessa os grãos de sal e de açúcar. Para que a luz seja dispersada, o tamanho das partículas deve ser similar ou menor que o comprimento de onda.

O grau de dispersão de Rayleigh que sofre um raio de luz depende do tamanho das partículas e do comprimento de onda da luz, dependências expressas de fato no coeficiente de dispersão; a intensidade da luz dispersada depende inversamente da quarta potência do comprimento de onda, relação conhecida como Lei de Rayleigh-Jeans. A dispersão de luz por partículas maiores a um décimo do comprimento de onda se explica com a teoria de Mie, que é uma explicação mais geral da difusão de radiação electromagnética.

Equacionamento[editar | editar código-fonte]

A intensidade I da luz dispersada por uma pequena partícula num feixe de luz de comprimento de onda λ e intensidade I0 é dada por:

 I = I_0 \frac{ (1+\cos^2 \theta) }{2 R^2} \left( \frac{ 2 \pi }{ \lambda } \right)^4 \left( \frac{ n^2-1}{ n^2+2 } \right)^2 \left( \frac{d}{2} \right)^6

Onde R é a distância à partícula, θ é o ângulo de dispersão, n é o índice de refração da partícula e d é o diâmetro da partícula.

No caso de luz polarizada (e não se pode generalizar) também podemos expressar:

 I = I_0 |\sigma(\theta,\phi)|^2 \frac{(2\pi)^2}{(\lambda R)^2}
 \sigma(\theta,\phi) = A(\theta) \sen(\phi) \hat e_\phi +  B(\theta) \cos(\phi) \hat e_\theta

Onde agora a parte dos símbolos anteriores temos o coeficiente de dispersão σ, e os ângulos em coordenadas esféricas θ e Φ. Onde seus vetores unitários se definem referidos ao plano que definem o vetor que contém a direção de propagação da radiação e o vetor que contém a direção da polarização da onda incidente. A parte temos os coeficientes da matriz de Lennard-Jones perpendicular A(θ) e paralelo B(θ) ao plano de dispersão.

A distribuição angular da dispersão de Rayleigh, que vem a ser dada pela fórmula (1+cos²θ), é simétrica no plano perpendicular à direção da luz incidente, portanto a luz dispersada iguala-se à luz incidente. Integrando a área da esfera que cerca una partícula obtemos a seção de choque da dispersão de Rayleigh, σs:

 \sigma_s = \frac{ 2 \pi^5}{3} \frac{d^6}{\lambda^4} \left( \frac{ n^2-1}{ n^2+2 } \right)^2

O coeficiente de dispersão para um grupo de partículas é o número de partículas por unidade de volume N vezes a seção transversal. Como em todos os efeitos de onda, na dispersão incoerente as potências são somadas aritmeticamente, ainda que na dispersão coerente (como acontece quando as partículas estão muito próximas umas das outras) os campos são somados aritmeticamente e a soma deve ser elevada ao quadrado, para obter a potência final.

A forte dependência da dispersão com o comprimento de onda (~λ−4) supõe que na atmosfera a luz azul se dispersa muito mais que a luz vermelha.Na atmosfera, isto provoca que os fótons de luz azul se dispersem muito mais que os de comprimentos de onda maiores que 490 nm, por este motivo vemos o céu azulado em todas as direções e só o vemos avermelhado quando olhamos o próximos ao Sol.

Observações[editar | editar código-fonte]

Cabe destacar que, apesar do uso do termo fóton, a lei de dispersão de Rayleigh foi desenvolvida antes do desenvolvimento da mecânica quântica e portanto, não se baseia fundamentalmente na teoria moderna sobre a interação da luz com a matéria. Não obstante, a dispersão de Rayleigh é uma boa aproximação da forma pela qual a luz é dispersada por partículas muito menores que seu comprimento de onda.

Referências[editar | editar código-fonte]

Ligações externas[editar | editar código-fonte]

Ver também[editar | editar código-fonte]

Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.