Quadrângulo de Casius

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Mapa do quadrângulo de Casius com as principais formações indicadas.


O quadrângulo de Casius é um de uma série de 30 quadrângulos em Marte estabelecidos pelo Programa de Pesquisa de Astrogeologia do Serviço Geológico dos Estados Unidos (USGS em inglês). O quadrângulo se localiza na porção noroeste do hemisfério ocidental de Marte e cobre uma área que vai de 60º a 120º longitude leste (240º a 300º longitude oeste) e de 30º a 65º latitude norte. O quadrângulo utiliza uma Projeção conforme de Lambert a uma escala nominal de 1:5,000,000 (1:5M). Também se pode referir ao quadrângulo de Casius como MC-6 (Mars Chart-6).1

As delimitações sul e norte do quadrângulo de Casius medem aproximadamente 3,065 km e 1,500 km de largura, respectivamente. A distância norte-sul é de aproximadamente 2,050 km (pouco menos que a distância da Groenlândia).2 O quadrângulo cobre uma área aproximada de 4,9 milhões de km², ou pouco mais de 3% da área superficial de Marte.3

Origem do nome[editar | editar código-fonte]

Casius é o nome de uma formação de albedo telescópica localizada a 40° N e 100° E em Marte. A formação recebeu o nome de um epíteto para Zeus dos seus santuários no Egito e na Síria. O nome foi aprovado pela União Astronômica Internacional (UAI) em 1958.4

Fisiografia e geologia[editar | editar código-fonte]

Em áreas de alta latitude existem formações as quais se acredita indicar a presença de gelo no solo. Solo poligonal é uma dessas formações. Geralmente, formas poligonais são encontrados a latitude 55º em direção ao pólo.5 Outra formação associada ao gelo no solo é a topografia fatiada, tal como se pode observar nas imagens das formações periglaciais em Utopia.6

Nilosyrtis[editar | editar código-fonte]

Nilosyrtis corre de aproximadamente 280 a 304º latitude oeste, e assim, como várias outras formações, se localiza em mais de um quadrângulo. Parte de Nilosyrtis se encontra no quadrângulo de Ismenius Lacus, e o resto no quadrângulo de Casius.


Crateras fôrma circular[editar | editar código-fonte]

Crateras fôrma circular (ring mold craters) se assemelham a fômas arredondadas com um furo no meio utilizadas na preparação de bolos. Acredita-se que estas se originam a partir de um impacto sobre o gelo. O gelo é coberto por uma camada de pedregulhos. Elas são encontradas em partes de Marte que contém gelo soterrado. Experimentos de laboratório confirmam que impacto sobre o gelo resulta em um "formato de fôrma arredondada."7 8 9 Elas podem ser uma fonte de água facilmente acessível para possíveis colonizadores futuros de Marte.


Preenchimento de cratera concêntrico[editar | editar código-fonte]

O preenchimento de cratera concêntrico se caracteriza por um leito de uma cratera coberto em sua maior parte por um grande número de tergos paralelos.10 Acredita-se que esta formação seja resultado de algum tipo de movimentação glacial. 11 12 Às vezes penedos são encontrados em preenchimentos de cratera concêntricos; acredita-se que eles se desprenderam e caíram da parede da cratera, tendo sido então transportados para longe da parede com o movimento da geleira. 13 14 Blocos erráticos na Terra são transportados de maneira similar. Baseado em medições topográficas acuradas da altura em diferentes pontos nessas crateras e cálculos da profundidade estimada de uma cratera baseada em seu diâmetro, especula-se que essas crateras sejam preenchidas em 80% majoritariamente por gelo. Isto é, essas crateras comportam centenas de metros de material que consiste provavelmente em gelo com poucas dezenas de metros de cascalho superficial. 15 O gelo que se acumulou na cratera é originário da precipitação de neve em climas passados.16

Imagens de alta resolução obtidas pela HiRISE revelam que algumas das superfícies do preenchimento concêntrico de cratera são cobertas por estranhos padrões chamados terreno cerebral em célula fechada e célula aberta. O terreno lembra um cérebro humano. Acredita-se que essa forma seja causada por rachaduras na superfície acumulando poeira e outros sedimentos, junto ao gelo sublimando de algumas partes da superfície.17

Mars Science Laboratory[editar | editar código-fonte]

Nilosyrtis é um dos locais propostos como local de aterrissagem para a Mars Science Laboratory. No entanto, a região não foi selecionada entre as finalistas. Nilosyrtis chegou ao top 7, mas não ao top 4. O propósito da Mars Science Laboratory é procurar por antigos sinais de vida. Espera-se que uma missão posterior possa então retornar com amostras dos sítios identificados como prováveis locais contendo vestígios de vida. Para que a sonda possa vir ao solo com segurança um é necessário um disco achatado na superfície medindo 19,3 km. Geólogos esperam examinar lugares onde a água formara lagoas.18 A intenção é examinar camadas sedimentares.

Galeria[editar | editar código-fonte]

Referências

  1. Davies, M.E.; Batson, R.M.; Wu, S.S.C. “Geodesy and Cartography” in Kieffer, H.H.; Jakosky, B.M.; Snyder, C.W.; Matthews, M.S., Eds. Mars. University of Arizona Press: Tucson, 1992.
  2. Distances calculated using NASA World Wind measuring tool. http://worldwind.arc.nasa.gov/.
  3. Approximated by integrating latitudinal strips with area of R^2 (L1-L2)(cos(A)dA) from 30° to 65° latitude; where R = 3889 km, A is latitude, and angles expressed in radians. See: http://stackoverflow.com/questions/1340223/calculating-area-enclosed-by-arbitrary-polygon-on-earths-surface.
  4. USGS Gazetteer of Planetary Nomenclature. Mars. http://planetarynames.wr.usgs.gov/.
  5. Mangold, N. 2005. High latitude paterned grounds on Mars: Classification, distribution and climatic control. Icarus. 174-336-359.
  6. http://hiroc.lpl.arizona.edu/images/PSP/diafotizo.php?ID=PSP_002296_1215
  7. Kress, A., J. Head. 2008. Ring-mold craters in lineated valley fill and lobate debris aprons on Mars: Evidence for subsurface glacial ice. Geophys.Res. Lett: 35. L23206-8
  8. Baker, D. et all. 2010. Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: Evidence for extensive mid-latitude glaciation in the Late Amazonian. Icarus: 207. 186-209
  9. Kress., A. and J. Head. 2009. Ring-mold craters on lineated valley fill, lobate debris aprons, and concentric crater fill on Mars: Implications for near-surface structure, composition, and age. Lunar Planet. Sci: 40. abstract 1379
  10. http:hiroc.lpl.arizona.edu/images/PSP/diafotizo.php?ID=PSP_111926_2185
  11. Head, J. et al. 2006. Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for late Amazonian obliquity-driven climate change. Earth Planet. Sci Lett: 241. 663-671.
  12. Levy, J. et al. 2007. Lineated valley fill and lobate debris apron stratigraphy in Nilosyrtis Mensae, Mars: Evidence for phases of glacial modification of the dichotomy boundary. J. Geophys. Res: 112.
  13. Marchant, D. et al. 2002. Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon valley, southern Victorialand, Antarctica. Geol. Soc. Am. Bull:114. 718-730.
  14. Head, J. and D. Marchant. 2006. Modification of the walls of a Noachian crater in northern Arabia Terra (24E, 39N) during mid-latitude Amazonian glacial epochs on Mars: Nature and evolution of lobate debris aprons and their relationships to lineated valley fill and glacial systems. Lunar Planet. Sci: 37. Abstract # 1126.
  15. Garvin, J. et al. 2002. Global geometric properties of martian impact craters. Lunar Planet. Sci: 33. Abstract # 1255.
  16. Kreslavsky, M. and J. Head. 2006. Modification of impact craters in the northern planes of Mars: Implications for the Amazonian climate history. Meteorit. Planet. Sci.: 41. 1633-1646
  17. Ley, J. et al. 2009. Concentric crater fill in Utopia Planitia: History and interaction between glacial "brain terrain" and periglacial processes. Icarus: 202. 462-476.
  18. http://themis.asu.edu/features/ianichaos

Ver também[editar | editar código-fonte]