Usuária:MCarrera (NeuroMat)/Testes/Síntese de fala

Origem: Wikipédia, a enciclopédia livre.
Um microcomputador Apricot, de 1984, o qual já possuía limitada capacidade de síntese de voz.

Síntese de voz é o processo de produção artificial de voz humana. Um sistema informático utilizado para este propósito é denominado sintetizador de voz, e pode ser implementado em software ou hardware. Um sistema texto-voz (TTS, na sigla em inglês) converte texto em linguagem normal para voz. Outros sistemas interpretam representação lingüística simbólica (como transcrição fonética) em voz.[1]

Voz sintetizada pode ser criada concatenando-se pedaços de fala gravada, armazenada num banco de dados. Os sistemas diferem no tamanho das unidades de fala armazenada. Um sistema que armazene fones ou alofones fornecem a maior faixa de saída, mas podem carecer de clareza. Para usos específicos, o armazenamento de palavras ou frases inteiras possibilita uma saída de alta qualidade. Alternativamente, um sintetizador pode incorporar um modelo do trato vocal (caminho percorrido pela voz) e outras características da voz humana, para criar como saída uma voz completamente "sintética".[2]

A qualidade de um sintetizador de voz é determinada por sua similaridade com a voz humana e por sua capacidade de ser entendida. Um programa TTS inteligível permite que pessoas com deficiência visual ou com dificuldades de leitura possam ouvir obras escritas em um computador pessoal. Muitos sistemas operacionais têm incluído capacidade de síntese de voz desde o início da década de 1990. Na década de 1990, surgiram sistemas que fazem a operação inversa de converter voz para texto.

Esquema de um sistema texto-voz.

Um sistema texto-voz é composto de duas partes:[3] um front-end e um back-end. O front-end tem duas tarefas principais. Primeiro, converter texto bruto contendo símbolos como números e abreviações no equivalente de palavras escritas. Este processo é muitas vezes chamado de normalização de texto, pré-processamento ou tokenização. Depois, atribuir transcrições fonéticas a cada palavra e dividir e marcar o texto em unidades como sentenças, frases e cláusulas. Este processo é chamado de conversão de texto para fonema ou grafema para fonema. As transcrições fonéticas e as informações da prosódia compõem a representação lingüística simbólica que é produzida pelo front-end.

Então, o back-end (muitas vezes referido como o sintetizador) converte a representação lingüística simbólica em som. Em certos sistemas, esta parte inclui a computação da prosódia (contorno de tom, durações de fonemas),[4] que é então imposta na fala de saída.

História[editar | editar código-fonte]

Muito antes da invenção do processamento de sinal eletrônico, algumas pessoas tentaram construir máquinas para emular a fala humana. Algumas primeiras lendas do Brazen Head envolveram o Papa Silvestre II (946 – 1003), Albertus Magnus (1198 – 1280), e Roger Bacon (1214 – 1294). Em 1779, o cientista dinamarquês Christian Gottlieb Kratzenstein, que trabalhava na Academia de Ciências da Rússia, construiu modelos do trato vocal humano que podiam produzir os cinco sons das vogais longas (na notação alfabética fonética internacional: [aː], [eː] [Iː], [oː] e [uː]).[5] Em seguida, a "máquina de fala acústico-mecânica" de Wolfgang von Kempelen, de Pressburg, na Hungria, foi descrita em um artigo em 1791.[6] Esta máquina adicionou modelos da língua e dos lábios, permitindo que fossem produzidas tanto consoantes quanto vogais. Em 1837, Charles Wheatstone produziu uma "máquina de falar" com base no projeto de von Kempelen. Em 1846, Joseph Faber exibiu a Euphonia. Em 1923, Paget ressuscitou o projeto de Wheatstone.[7]

Na década de 1930, Bell Labs desenvolveu o vocoder, que automaticamente analisou a fala em seus tons e ressonâncias fundamentais. Do seu trabalho no vocoder, Homer Dudley desenvolveu um sintetizador de voz operado por teclado chamado The Voder (Voice Demonstrator), exibido na Feira Mundial de Nova York de 1939. Dr. Franklin S. Cooper e seus colegas do Haskins Laboratories começaram a construir o Pattern Playback no final dos anos 1940 e terminaram o projeto em 1950. Das várias versões diferentes deste dispositivo hardware, apenas uma continua existindo atualmente. A máquina converte imagens dos padrões acústicos do discurso na forma de um espectrograma de volta ao som. Usando este dispositivo, Alvin Liberman e seus colegas descobriram pistas acústicas para a percepção dos segmentos fonéticos (consoantes e vogais).

Os sistemas dominantes nas décadas de 1980 e 1990 foram o sistema DECtalk, baseado em grande parte no trabalho de Dennis Klatt no MIT, e o sistema Bell Labs[8], um dos primeiros sistemas multilíngues de linguagens independentes, fazendo uso extensivo de métodos de processamento de linguagem natural. Os primeiros sintetizadores de voz eletrônicos pareciam robóticos e quase nunca eram inteligíveis. A qualidade da fala sintetizada tem melhorado continuamente, mas a saída A de 2016 dos sistemas de síntese de fala contemporânea permanece claramente distinguível da fala humana real. Em 2005, Kurzweil previu que como a relação custo-desempenho tornou os sintetizadores de voz mais baratos e mais acessíveis mais pessoas poderiam se beneficiar do uso de programas texto-voz.[9]

Dispositivos eletrônicos[editar | editar código-fonte]

Box do computador e do sintetizador de voz, usados por Stephen Hawking em 1999.

Os primeiros sistemas de síntese de fala de computador surgiram no final da década de 1950. Em 1968, Noriko Umeda et al. desenvolveu o primeiro sistema texto-fala em inglês no Electrotechnical Laboratory, no Japão.[10] Em 1961, o físico John Larry Kelly, Jr e seu colega Louis Gerstman[11] usaram um computador IBM 704 para sintetizar discursos, um dos eventos mais proeminentes da história da Bell Labs. O sintetizador de voz de Kelly (vocoder) recriou a canção Daisy Bell, com acompanhamento musical de Max Mathews. Coincidentemente, Arthur C. Clarke estava visitando seu amigo e colega John Pierce nas instalações do Bell Labs Murray Hill. Clarke ficou tão impressionado com a demonstração, que a utilizou na cena culminante do seu roteiro para seu romance 2001: Uma Odisséia no Espaço,[12] na qual o computador HAL 9000 canta a mesma música que o astronauta Dave Bowman coloca para dormir.[13] Apesar do sucesso da síntese de fala puramente eletrônica, a pesquisa em sintetizadores de fala mecânicos continua.[14]

A eletrônica portátil com síntese de fala começou a surgir na década de 1970. Um dos primeiros dispositivos foi a Speech +, calculadora portátil para cegos desenvolvida pela Telesensory Systems Inc. (TSI) em 1976.[15][16] Outros dispositivos tinham propósitos principalmente educacionais como o Speak & Spell, brinquedo produzido pela Texas Instruments em 1978.[17] A Fidelity lançou uma versão falada do seu computador de xadrez eletrônico em 1979.[18] O primeiro jogo de vídeo para caracterizar a síntese de fala foi o arcade game shoot 'em up Stratovox (conhecido no Japão como Speak & Rescue), lançado pela Sun Electronics em 1980. O primeiro jogo de computador pessoal com síntese de fala foi Manbiki Shoujo (Shoplifting Girl), lançado para o PET 2001 em 1980, para o qual o desenvolvedor do jogo, Hiroshi Suzuki, criou uma técnica de programação zero cross para produzir uma forma de onda de fala sintetizada.[19] Outro exemplo é a versão arcade de Berzerk, também de 1980. No mesmo ano, a Milton Bradley Company produziu o Milton, primeiro jogo eletrônico multi-player usando a síntese da voz.

Tecnologias de síntese de fala[editar | editar código-fonte]

As qualidades mais importantes de um sistema de síntese de fala são naturalidade (o quanto a saída se parece com a fala humana) e inteligibilidade (a facilidade com a qual a saída é compreendida).[20] Os sistemas de síntese de fala geralmente tentam maximizar ambas as características. O sintetizador de fala ideal é natural e inteligível. As duas tecnologias primárias que geram formas de onda de fala sintéticas são síntese por concatenação e síntese de formante. Cada tecnologia tem pontos fortes e fracos, de modo que os usos pretendidos de um sistema de síntese de fala normalmente determinarão qual abordagem será utilizada.

Síntese por concatenação[editar | editar código-fonte]

A síntese por concatenação é baseada na concatenação de segmentos de fala gravada. Geralmente a síntese por concatenação produz a fala sintetizada mais natural. Entretanto, as diferenças entre as variações naturais na fala e a natureza das técnicas automatizadas para segmentar as formas de onda às vezes resultam em falhas audíveis na saída. Existem três subtipos principais de síntese por concatenação, síntese por seleção de unidades, síntese por dífonos e síntese por domínio específico.

Síntese por seleção de unidades[editar | editar código-fonte]

A síntese por seleção de unidades utiliza grandes bancos de dados de fala gravada. Durante a criação do banco de dados, cada enunciado gravado é segmentado em algumas das opções seguintes, sons individuais, dífonos, metades de sons, sílabas, morfemas, palavras, frases e sentenças. Tipicamente a divisão em segmentos é feita por meio de um reconhecedor de fala especialmente modificado, ajustado para um modo de "alinhamento forçado" com alguma correção manual posterior, usando representações visuais como a forma de onda e o espectrograma.[21] Então, um índice das unidades na base de dados de fala é criado com base na segmentação e nos parâmetros acústicos como frequência fundamental (pitch), duração, posição na sílaba e sons vizinhos. Durante a execução, o enunciado é criado com a determinação da melhor cadeia de unidades candidatas a partir do banco de dados (seleção de unidade). Este processo é tipicamente realizado utilizando uma árvore de decisão especialmente ponderada.

A seleção de unidade garante maior naturalidade, porque aplica apenas uma pequena quantidade de processamento de sinal digital no discurso gravado. Muitas vezes o processamento de sinal digital torna o som gravado menos natural, embora alguns sistemas usem uma pequena quantidade de processamento de sinal digital no ponto de concatenação para suavizar a forma de onda. Muitas vezes a saída dos melhores sistemas de seleção de unidades é indistinguível de vozes humanas reais, especialmente em contextos para os quais o sistema texto-voz foi ajustado. No entanto, a máxima naturalidade normalmente requer que as bases de dados de fala de seleção de unidade sejam muito grandes, em alguns sistemas que variam entre os gigabytes de dados gravados, representando dezenas de horas de fala.[22] Os algoritmos de selecção de unidade também têm sido estudados para seleccionar segmentos de um local que resulte em menos que a síntese ideal (por exemplo, palavras menores ficam obscuras), mesmo quando existe uma melhor escolha no banco de dados.[23] Recentemente os pesquisadores propuseram vários métodos automatizados para detectar segmentos não naturais em sistemas de síntese de fala de seleção de unidade.[24]

Síntese por dífonos[editar | editar código-fonte]

A síntese por dífonos usa um banco de dados de fala mínimo contendo todos os dífonos que ocorrem em uma linguagem. O número de dífonos depende da fonotática da língua (por exemplo, o espanhol tem cerca de 800 dífonos e o alemão tem cerca de 2500 dífonos). Na síntese por dífonos, apenas um exemplo de cada dífono está contido na base de dados de fala. Durante a execução, a prosodia de uma sentença é sobreposta nestas unidades mínimas por meio de técnicas de processamento de sinal digital como codificação preditiva linear, PSOLA,[25] MBROLA,[26] ou técnicas mais recentes como modificação de afinação no domínio de origem usando a transformada discreta de cosseno.[27] A síntese por dífonos sofre das falhas acústicas da síntese por concatenação e da natureza robótica da síntese de formantes e tem poucas das vantagens de qualquer abordagem diferente do tamanho pequeno. Consequentemente, a síntese por dífonos tem sido menos usada para fins comerciais, embora continue a ser utilizada em pesquisas devido a uma série de implementações de software livremente disponíveis.

Síntese por domínio específico[editar | editar código-fonte]

A síntese por domínio específico concatena palavras e frases pré-gravadas para criar enunciações completas. A síntese por domínio específico é aplicada quando a variedade de textos que o sistema produzirá é limitada a um domínio específico como anúncios de cronograma de trânsito ou relatórios meteorológicos.[28] Esta tecnologia é muito simples de ser implementada e tem sido usada para fins comerciais por um longo tempo em dispositivos como relógios falantes e calculadoras. O nível de naturalidade destes sistemas pode ser muito alto porque a variedade de tipos de sentença é limitada, se aproximando da prosódia e da entonação das gravações originais.

Como estes sistemas são limitados pelas palavras e frases em suas bases de dados, eles não têm aplicações gerais e apenas podem sintetizar as combinações de palavras e frases com as quais foram pré-programadas. Porém, a mistura de palavras dentro da linguagem naturalmente falada também pode causar problemas a menos que as muitas variações sejam levadas em conta. Por exemplo, em dialetos não-róticos do inglês a letra "r" em palavras como "clear" /klɪə/ normalmente é somente pronunciada quando a palavra seguinte começa com vogal (por exemplo, "clear out" é pronunciada como /klɪəɾʌʊt/ ). Da mesma forma, em francês muitas consoantes finais deixam de ser silenciosas se forem seguidas por uma palavra que começa com vogal, um efeito chamado de ligação. Esta alternância não pode ser reproduzida por um simples sistema de concatenação de palavras, o que exigiria uma complexidade adicional para ser sensível ao contexto.

Síntese de formantes[editar | editar código-fonte]

A síntese de formantes não utiliza amostras de fala humana durante a execução. Em vez disto, a saída de fala sintetizada é criada usando a síntese aditiva e um modelo acústico (síntese de modelação física).[29] Parâmetros como freqüência fundamental, voicing e níveis de ruído são variados ao longo do tempo para criar uma forma de onda de fala artificial. Este método às vezes é chamado de síntese baseada em regras. Entretanto, muitos sistemas por concatenação também têm componentes baseados em regras. Muitos sistemas baseados em tecnologia de síntese de formantes geram discurso artificial e robótico, que nunca seria confundido com a fala humana. No entanto, a máxima naturalidade nem sempre é o objetivo de um sistema de síntese de fala. Os sistemas de síntese de formantes têm vantagens sobre os sistemas por concatenação. A fala sintetizada pelo formante pode ser inteligível de forma confiável mesmo sob velocidades muito altas, evitando falhas acústicas que comumente afetam os sistemas por concatenação. O discurso sintetizado de alta velocidade é usado pelas pessoas com deficiência visual para navegar rapidamente em computadores usando um leitor de tela. Os sintetizadores de formantes são geralmente programas menores do que os sistemas por concatenação porque não têm um banco de dados de amostras de fala. Portanto, podem ser usados ​​em sistemas embarcados, em que memória e potência do microprocessador são especialmente limitados. Como os sistemas baseados em formantes têm o controle completo de todos os aspectos da fala de saída, uma grande variedade de prosodias e entonações podem ser produzidas transmitindo não apenas perguntas e declarações, como também uma variedade de emoções e tons de voz. Entre os exemplos de síntese de formantes sem ser em tempo real, mas com controle de entonação bastante preciso, estão o trabalho feito no final da década de 1970 para o brinquedo Speak & Spell, da Texas Instruments, e no início dos anos 1980 nas máquinas de arcade Sega e em muitos outros jogos arcade da Atari Inc.[30] usando o TMS5220 LPC Chips. A criação da entonação adequada para estes projetos foi cuidadosa e os resultados ainda precisam ser acompanhados por interfaces texto-fala em tempo real.[31]

Síntese articulatória[editar | editar código-fonte]

A síntese articulatória refere-se às técnicas computacionais para sintetizar a fala a partir de modelos e dos processos de articulação do trato vocal humano. O primeiro sintetizador articular utilizado regularmente para experiências laboratoriais foi desenvolvido no Haskins Laboratories em meados da década de 1970 por Philip Rubin, Tom Baer e Paul Mermelstein. Este sintetizador conhecido como ASY foi baseado em modelos do trato vocal desenvolvidos no Bell Laboratories nos anos 1960 e 1970 por Paul Mermelstein, Cecil Coker e seus colegas. Os modelos de síntese articulatória ainda não foram incorporados em sistemas comerciais de síntese da fala, com exceção do sistema baseado em NeXT originalmente desenvolvido e comercializado pela Trillium Sound Research, uma empresa spin-off da Universidade de Calgary, onde a maior parte da pesquisa original foi realizada.

Depois do fim das várias encarnações de NeXT (iniciado por Steve Jobs no final da década de 1980 e fundido com a Apple Computer em 1997), o software Trillium foi publicado sob GNU General Public License com o trabalho tendo continuando como gnuspeech. Este sistema comercializado pela primeira vez em 1994 fornece conversão completa texto-voz baseada em articulações usando um guia de ondas ou um análogo de linha de transmissão dos tratos orais e nasais humanos controlados pelo modelo de Carré. Os sintetizadores mais recentes desenvolvidos por Jorge C. Lucero e seus colegas incorporam modelos de biomecânica da prega vocal, aerodinâmica glotal e propagação das ondas acústicas nas cavidades dos brônquios, da traqueia, nasal e oral, assim constituindo sistemas completos de simulação de fala baseados na física..[32][33]

Síntese baseada no modelo oculto de Markov [editar | editar código-fonte]

Na síntese baseada no modelo oculto de Markov (também chamada de síntese paramétrica estatística), o espectro de freqüência (trato vocal), freqüência fundamental (fonte de voz) e duração (prosódia) da fala são modelados simultaneamente pelo modelo oculto de Markov. As formas de onda de fala são geradas a partir do modelo oculto de Markov, com base no critério de máxima verossimilhança.[34]

Síntese sinusoidal[editar | editar código-fonte]

A síntese sinusoidal é uma técnica para sintetizar a fala, substituindo os formantes (bandas principais de energia) pelos assobios de tom puro.[35]

Challenges[editar | editar código-fonte]

Text normalization challenges[editar | editar código-fonte]

The process of normalizing text is rarely straightforward. Texts are full of heteronyms, numbers, and abbreviations that all require expansion into a phonetic representation. There are many spellings in English which are pronounced differently based on context. For example, "My latest project is to learn how to better project my voice" contains two pronunciations of "project".

Most text-to-speech (TTS) systems do not generate semantic representations of their input texts, as processes for doing so are unreliable, poorly understood, and computationally ineffective. As a result, various heuristic techniques are used to guess the proper way to disambiguate homographs, like examining neighboring words and using statistics about frequency of occurrence.

Recently TTS systems have begun to use HMMs (discussed above) to generate "parts of speech" to aid in disambiguating homographs. This technique is quite successful for many cases such as whether "read" should be pronounced as "red" implying past tense, or as "reed" implying present tense. Typical error rates when using HMMs in this fashion are usually below five percent. These techniques also work well for most European languages, although access to required training corpora is frequently difficult in these languages.

Deciding how to convert numbers is another problem that TTS systems have to address. It is a simple programming challenge to convert a number into words (at least in English), like "1325" becoming "one thousand three hundred twenty-five." However, numbers occur in many different contexts; "1325" may also be read as "one three two five", "thirteen twenty-five" or "thirteen hundred and twenty five". A TTS system can often infer how to expand a number based on surrounding words, numbers, and punctuation, and sometimes the system provides a way to specify the context if it is ambiguous.[36] Roman numerals can also be read differently depending on context. For example, "Henry VIII" reads as "Henry the Eighth", while "Chapter VIII" reads as "Chapter Eight".

Similarly, abbreviations can be ambiguous. For example, the abbreviation "in" for "inches" must be differentiated from the word "in", and the address "12 St John St." uses the same abbreviation for both "Saint" and "Street". TTS systems with intelligent front ends can make educated guesses about ambiguous abbreviations, while others provide the same result in all cases, resulting in nonsensical (and sometimes comical) outputs, such as "co-operation" being rendered as "company operation".

Text-to-phoneme challenges[editar | editar código-fonte]

Speech synthesis systems use two basic approaches to determine the pronunciation of a word based on its spelling, a process which is often called text-to-phoneme or grapheme-to-phoneme conversion (phoneme is the term used by linguists to describe distinctive sounds in a language). The simplest approach to text-to-phoneme conversion is the dictionary-based approach, where a large dictionary containing all the words of a language and their correct pronunciations is stored by the program. Determining the correct pronunciation of each word is a matter of looking up each word in the dictionary and replacing the spelling with the pronunciation specified in the dictionary. The other approach is rule-based, in which pronunciation rules are applied to words to determine their pronunciations based on their spellings. This is similar to the "sounding out", or synthetic phonics, approach to learning reading.

Each approach has advantages and drawbacks. The dictionary-based approach is quick and accurate, but completely fails if it is given a word which is not in its dictionary. As dictionary size grows, so too does the memory space requirements of the synthesis system. On the other hand, the rule-based approach works on any input, but the complexity of the rules grows substantially as the system takes into account irregular spellings or pronunciations. (Consider that the word "of" is very common in English, yet is the only word in which the letter "f" is pronounced [v].) As a result, nearly all speech synthesis systems use a combination of these approaches.

Languages with a phonemic orthography have a very regular writing system, and the prediction of the pronunciation of words based on their spellings is quite successful. Speech synthesis systems for such languages often use the rule-based method extensively, resorting to dictionaries only for those few words, like foreign names and borrowings, whose pronunciations are not obvious from their spellings. On the other hand, speech synthesis systems for languages like English, which have extremely irregular spelling systems, are more likely to rely on dictionaries, and to use rule-based methods only for unusual words, or words that aren't in their dictionaries.

Evaluation challenges[editar | editar código-fonte]

The consistent evaluation of speech synthesis systems may be difficult because of a lack of universally agreed objective evaluation criteria. Different organizations often use different speech data. The quality of speech synthesis systems also depends on the quality of the production technique (which may involve analogue or digital recording) and on the facilities used to replay the speech. Evaluating speech synthesis systems has therefore often been compromised by differences between production techniques and replay facilities.

Since 2005, however, some researchers have started to evaluate speech synthesis systems using a common speech dataset.[37]

Prosodics and emotional content[editar | editar código-fonte]

A study in the journal Speech Communication by Amy Drahota and colleagues at the University of Portsmouth, UK, reported that listeners to voice recordings could determine, at better than chance levels, whether or not the speaker was smiling.[38][39][40] It was suggested that identification of the vocal features that signal emotional content may be used to help make synthesized speech sound more natural. One of the related issues is modification of the pitch contour of the sentence, depending upon whether it is an affirmative, interrogative or exclamatory sentence. One of the techniques for pitch modification[41] uses discrete cosine transform in the source domain (linear prediction residual). Such pitch synchronous pitch modification techniques need a priori pitch marking of the synthesis speech database using techniques such as epoch extraction using dynamic plosion index applied on the integrated linear prediction residual of the voiced regions of speech.[42]

Dedicated hardware[editar | editar código-fonte]

Early Technology (not available anymore)

Current (as of 2013)

  • Magnevation SpeakJet (www.speechchips.com) TTS256 Hobby and experimenter.
  • Epson S1V30120F01A100 (www.epson.com) IC DECTalk Based voice, Robotic, Eng/Spanish
  • Textspeak TTS-EM (www.textspeak.com) ICs, Modules and Industrial enclosures in 24 languages. Human sounding, Phoneme based.

Hardware and software systems[editar | editar código-fonte]

Popular systems offering speech synthesis as a built-in capability.

Mattel[editar | editar código-fonte]

The Mattel Intellivision game console offered the Intellivoice Voice Synthesis module in 1982. It included the SP0256 Narrator speech synthesizer chip on a removable cartridge. The Narrator had 2kB of Read-Only Memory (ROM), and this was utilized to store a database of generic words that could be combined to make phrases in Intellivision games. Since the Orator chip could also accept speech data from external memory, any additional words or phrases needed could be stored inside the cartridge itself. The data consisted of strings of analog-filter coefficients to modify the behavior of the chip's synthetic vocal-tract model, rather than simple digitized samples.

SAM[editar | editar código-fonte]

Also released in 1982, Software Automatic Mouth was the first commercial all-software voice synthesis program. It was later used as the basis for Macintalk. The program was available for non-Macintosh Apple computers (including the Apple II, and the Lisa), various Atari models and the Commodore 64. The Apple version preferred additional hardware that contained DACs, although it could instead use the computer's one-bit audio output (with the addition of much distortion) if the card was not present. The Atari made use of the embedded POKEY audio chip. Speech playback on the Atari normally disabled interrupt requests and shut down the ANTIC chip during vocal output. The audible output is extremely distorted speech when the screen is on. The Commodore 64 made use of the 64's embedded SID audio chip.

Atari[editar | editar código-fonte]

Arguably, the first speech system integrated into an operating system was the 1400XL/1450XL personal computers designed by Atari, Inc. using the Votrax SC01 chip in 1983. The 1400XL/1450XL computers used a Finite State Machine to enable World English Spelling text-to-speech synthesis.[44] Unfortunately, the 1400XL/1450XL personal computers never shipped in quantity.

The Atari ST computers were sold with "stspeech.tos" on floppy disk.

Apple[editar | editar código-fonte]

The first speech system integrated into an operating system that shipped in quantity was Apple Computer's MacInTalk. The software was licensed from 3rd party developers Joseph Katz and Mark Barton (later, SoftVoice, Inc.) and was featured during the 1984 introduction of the Macintosh computer. This January demo required 512 kilobytes of RAM memory. As a result, it could not run in the 128 kilobytes of RAM the first Mac actually shipped with.[45] So, the demo was accomplished with a prototype 512k Mac, although those in attendance were not told of this and the synthesis demo created considerable excitement for the Macintosh. In the early 1990s Apple expanded its capabilities offering system wide text-to-speech support. With the introduction of faster PowerPC-based computers they included higher quality voice sampling. Apple also introduced speech recognition into its systems which provided a fluid command set. More recently, Apple has added sample-based voices. Starting as a curiosity, the speech system of Apple Macintosh has evolved into a fully supported program, PlainTalk, for people with vision problems. VoiceOver was for the first time featured in Mac OS X Tiger (10.4). During 10.4 (Tiger) & first releases of 10.5 (Leopard) there was only one standard voice shipping with Mac OS X. Starting with 10.6 (Snow Leopard), the user can choose out of a wide range list of multiple voices. VoiceOver voices feature the taking of realistic-sounding breaths between sentences, as well as improved clarity at high read rates over PlainTalk. Mac OS X also includes say, a command-line based application that converts text to audible speech. The AppleScript Standard Additions includes a say verb that allows a script to use any of the installed voices and to control the pitch, speaking rate and modulation of the spoken text.

The Apple iOS operating system used on the iPhone, iPad and iPod Touch uses VoiceOver speech synthesis for accessibility.[46] Some third party applications also provide speech synthesis to facilitate navigating, reading web pages or translating text.

AmigaOS[editar | editar código-fonte]

The second operating system to feature advanced speech synthesis capabilities was AmigaOS, introduced in 1985. The voice synthesis was licensed by Commodore International from SoftVoice, Inc., who also developed the original MacinTalk text-to-speech system. It featured a complete system of voice emulation for American English, with both male and female voices and "stress" indicator markers, made possible through the Amiga's audio chipset.[47] The synthesis system was divided into a translator library which converted unrestricted English text into a standard set of phonetic codes and a narrator device which implemented a formant model of speech generation.. AmigaOS also featured a high-level "Speak Handler", which allowed command-line users to redirect text output to speech. Speech synthesis was occasionally used in third-party programs, particularly word processors and educational software. The synthesis software remained largely unchanged from the first AmigaOS release and Commodore eventually removed speech synthesis support from AmigaOS 2.1 onward.

Despite the American English phoneme limitation, an unofficial version with multilingual speech synthesis was developed. This made use of an enhanced version of the translator library which could translate a number of languages, given a set of rules for each language.[48]

Microsoft Windows[editar | editar código-fonte]

Modern Windows desktop systems can use SAPI 4 and SAPI 5 components to support speech synthesis and speech recognition. SAPI 4.0 was available as an optional add-on for Windows 95 and Windows 98. Windows 2000 added Narrator, a text–to–speech utility for people who have visual impairment. Third-party programs such as JAWS for Windows, Window-Eyes, Non-visual Desktop Access, Supernova and System Access can perform various text-to-speech tasks such as reading text aloud from a specified website, email account, text document, the Windows clipboard, the user's keyboard typing, etc. Not all programs can use speech synthesis directly.[49] Some programs can use plug-ins, extensions or add-ons to read text aloud. Third-party programs are available that can read text from the system clipboard.

Microsoft Speech Server is a server-based package for voice synthesis and recognition. It is designed for network use with web applications and call centers.

Texas Instruments TI-99/4A[editar | editar código-fonte]

In the early 1980s, TI was known as a pioneer in speech synthesis, and a highly popular plug-in speech synthesizer module was available for the TI-99/4 and 4A. Speech synthesizers were offered free with the purchase of a number of cartridges and were used by many TI-written video games (notable titles offered with speech during this promotion were Alpiner and Parsec). The synthesizer uses a variant of linear predictive coding and has a small in-built vocabulary. The original intent was to release small cartridges that plugged directly into the synthesizer unit, which would increase the device's built in vocabulary. However, the success of software text-to-speech in the Terminal Emulator II cartridge cancelled that plan.

Text-to-speech systems[editar | editar código-fonte]

Text-to-Speech (TTS) refers to the ability of computers to read text aloud. A TTS Engine converts written text to a phonemic representation, then converts the phonemic representation to waveforms that can be output as sound. TTS engines with different languages, dialects and specialized vocabularies are available through third-party publishers.[50]

Android[editar | editar código-fonte]

Version 1.6 of Android added support for speech synthesis (TTS).[51]

Internet[editar | editar código-fonte]

Currently, there are a number of applications, plugins and gadgets that can read messages directly from an e-mail client and web pages from a web browser or Google Toolbar, such as Text to Voice, which is an add-on to Firefox. Some specialized software can narrate RSS-feeds. On one hand, online RSS-narrators simplify information delivery by allowing users to listen to their favourite news sources and to convert them to podcasts. On the other hand, on-line RSS-readers are available on almost any PC connected to the Internet. Users can download generated audio files to portable devices, e.g. with a help of podcast receiver, and listen to them while walking, jogging or commuting to work.

A growing field in Internet based TTS is web-based assistive technology, e.g. 'Browsealoud' from a UK company and Readspeaker. It can deliver TTS functionality to anyone (for reasons of accessibility, convenience, entertainment or information) with access to a web browser. The non-profit project Pediaphon was created in 2006 to provide a similar web-based TTS interface to the Wikipedia.[52]

Other work is being done in the context of the W3C through the W3C Audio Incubator Group with the involvement of The BBC and Google Inc.

Open source[editar | editar código-fonte]

Systems that operate on free and open source software systems including Linux are various, and include open-source programs such as the Festival Speech Synthesis System which uses diphone-based synthesis, as well as more modern and better-sounding techniques, eSpeak, which supports a broad range of languages, and gnuspeech which uses articulatory synthesis[53] from the Free Software Foundation.

Others[editar | editar código-fonte]

  • Following the commercial failure of the hardware-based Intellivoice, gaming developers sparingly used software synthesis in later games. A famous example is the introductory narration of Nintendo's Super Metroid game for the Super Nintendo Entertainment System. Earlier systems from Atari, such as the Atari 5200 (Baseball) and the Atari 2600 (Quadrun and Open Sesame), also had games utilizing software synthesis.
  • Some e-book readers, such as the Amazon Kindle, Samsung E6, PocketBook eReader Pro, enTourage eDGe, and the Bebook Neo.
  • The BBC Micro incorporated the Texas Instruments TMS5220 speech synthesis chip,
  • Some models of Texas Instruments home computers produced in 1979 and 1981 (Texas Instruments TI-99/4 and TI-99/4A) were capable of text-to-phoneme synthesis or reciting complete words and phrases (text-to-dictionary), using a very popular Speech Synthesizer peripheral. TI used a proprietary codec to embed complete spoken phrases into applications, primarily video games.[54]
  • IBM's OS/2 Warp 4 included VoiceType, a precursor to IBM ViaVoice.
  • GPS Navigation units produced by Garmin, Magellan, TomTom and others use speech synthesis for automobile navigation.
  • Yamaha produced a music synthesizer in 1999, the Yamaha FS1R which included a Formant synthesis capability. Sequences of up to 512 individual vowel and consonant formants could be stored and replayed, allowing short vocal phrases to be synthesized.

Speech synthesis markup languages[editar | editar código-fonte]

A number of markup languages have been established for the rendition of text as speech in an XML-compliant format. The most recent is Speech Synthesis Markup Language (SSML), which became a W3C recommendation in 2004. Older speech synthesis markup languages include Java Speech Markup Language (JSML) and SABLE. Although each of these was proposed as a standard, none of them have been widely adopted.

Speech synthesis markup languages are distinguished from dialogue markup languages. VoiceXML, for example, includes tags related to speech recognition, dialogue management and touchtone dialing, in addition to text-to-speech markup.

Applications[editar | editar código-fonte]

Speech synthesis has long been a vital assistive technology tool and its application in this area is significant and widespread. It allows environmental barriers to be removed for people with a wide range of disabilities. The longest application has been in the use of screen readers for people with visual impairment, but text-to-speech systems are now commonly used by people with dyslexia and other reading difficulties as well as by pre-literate children. They are also frequently employed to aid those with severe speech impairment usually through a dedicated voice output communication aid.

Speech synthesis techniques are also used in entertainment productions such as games and animations. In 2007, Animo Limited announced the development of a software application package based on its speech synthesis software FineSpeech, explicitly geared towards customers in the entertainment industries, able to generate narration and lines of dialogue according to user specifications.[55] The application reached maturity in 2008, when NEC Biglobe announced a web service that allows users to create phrases from the voices of Code Geass: Lelouch of the Rebellion R2 characters.[56]

In recent years, Text to Speech for disability and handicapped communication aids have become widely deployed in Mass Transit. Text to Speech is also finding new applications outside the disability market. For example, speech synthesis, combined with speech recognition, allows for interaction with mobile devices via natural language processing interfaces.

Text-to speech is also used in second language acquisition. Voki, for instance, is an educational tool created by Oddcast that allows users to create their own talking avatar, using different accents. They can be emailed, embedded on websites or shared on social media.

In addition, speech synthesis is a valuable computational aid for the analysis and assessment of speech disorders. A voice quality synthesizer, developed by Jorge C. Lucero et al. at University of Brasilia, simulates the physics of phonation and includes models of vocal frequency jitter and tremor, airflow noise and laryngeal asymmetries.[57] The synthesizer has been used to mimic the timbre of dysphonic speakers with controlled levels of roughness, breathiness and strain.[58]

APIs[editar | editar código-fonte]

Multiple companies offer TTS APIs to their customers to accelerate development of new applications utilizing TTS technology. Companies offering TTS APIs include AT&T, CereProc, DIOTEK, IVONA, Neospeech, Readspeaker, SYNVO, YAKiToMe! and CPqD. For mobile app development, Android operating system has been offering text to speech API for a long time. Most recently, with iOS7, Apple started offering an API for text to speech.

Stephen Hawking is one of the most famous people using a speech computer to communicate

Ver também[editar | editar código-fonte]

Referências

  1. «Speech synthesis». World Wide Web Organization 
  2. «Blizzard Challenge». Festvox.org. Consultado em 22 de fevereiro de 2012 
  3. «Smile -and the world can hear you». University of Portsmouth. January 9, 2008. Cópia arquivada em 17 de maio de 2008  Verifique data em: |data= (ajuda)
  4. «Smile - And The World Can Hear You, Even If You Hide». Science Daily. January 2008  Verifique data em: |data= (ajuda)
  5. History and Development of Speech Synthesis, Helsinki University of Technology, Retrieved on November 4, 2006
  6. Muralishankar, R.; Ramakrishnan, A. G.; Prathibha, P. (February 2004). «Modification of pitch using DCT in the source domain». Speech Communication. 42 (2): 143–154. doi:10.1016/j.specom.2003.05.001. Consultado em 7 December 2014  Verifique data em: |acessodata=, |data= (ajuda)
  7. Prathosh, A. P.; Ramakrishnan, A. G.; Ananthapadmanabha, T. V. (December 2013). «Epoch extraction based on integrated linear prediction residual using plosion index». IEEE Trans. Audio Speech Language Processing. 21 (12): 2471–2480. doi:10.1109/TASL.2013.2273717. Consultado em 19 December 2014  Verifique data em: |acessodata=, |data= (ajuda)
  8. Sproat, Richard W. (1997). Multilingual Text-to-Speech Synthesis: The Bell Labs Approach. [S.l.]: Springer. ISBN 0-7923-8027-4 
  9. «1400XL/1450XL Speech Handler External Reference Specification» (PDF). Consultado em 22 de fevereiro de 2012 
  10. Klatt, D (1987). «Review of text-to-speech conversion for English». Journal of the Acoustical Society of America. 82 (3): 737–93. doi:10.1121/1.395275 
  11. Lambert, Bruce (March 21, 1992). «Louis Gerstman, 61, a Specialist In Speech Disorders and Processes». New York Times  Verifique data em: |data= (ajuda)
  12. Miner, Jay; et al. (1991). Amiga Hardware Reference Manual 3rd ed. [S.l.]: Addison-Wesley Publishing Company, Inc. ISBN 0-201-56776-8 
  13. Devitt, Francesco (30 June 1995). «Translator Library (Multilingual-speech version)». Consultado em 9 April 2013  Verifique data em: |acessodata=, |data= (ajuda)
  14. Anthropomorphic Talking Robot Waseda-Talker Series
  15. TSI Speech+ & other speaking calculators
  16. Jean-Michel Trivi (23 de setembro de 2009). «An introduction to Text-To-Speech in Android». Android-developers.blogspot.com. Consultado em 17 de fevereiro de 2010 
  17. Andreas Bischoff, The Pediaphon - Speech Interface to the free Wikipedia Encyclopedia for Mobile Phones, PDA's and MP3-Players, Proceedings of the 18th International Conference on Database and Expert Systems Applications, Pages: 575-579 ISBN 0-7695-2932-1, 2007
  18. «gnuspeech». Gnu.org. Consultado em 17 de fevereiro de 2010 
  19. «Smithsonian Speech Synthesis History Project (SSSHP) 1986-2002». Mindspring.com. Consultado em 17 de fevereiro de 2010 
  20. «Speech Synthesis Software for Anime Announced». Anime News Network. 2 de maio de 2007. Consultado em 17 de fevereiro de 2010 
  21. «Code Geass Speech Synthesizer Service Offered in Japan». Animenewsnetwork.com. 9 de setembro de 2008. Consultado em 17 de fevereiro de 2010 
  22. John Kominek and Alan W. Black. (2003). CMU ARCTIC databases for speech synthesis. CMU-LTI-03-177. Language Technologies Institute, School of Computer Science, Carnegie Mellon University.
  23. Julia Zhang. Language Generation and Speech Synthesis in Dialogues for Language Learning, masters thesis, Section 5.6 on page 54.
  24. William Yang Wang and Kallirroi Georgila. (2011). Automatic Detection of Unnatural Word-Level Segments in Unit-Selection Speech Synthesis, IEEE ASRU 2011.
  25. Pitch-Synchronous Overlap and Add (PSOLA) Synthesis no Wayback Machine (arquivado em fevereiro 22, 2007)
  26. T. Dutoit, V. Pagel, N. Pierret, F. Bataille, O. van der Vrecken. The MBROLA Project: Towards a set of high quality speech synthesizers of use for non commercial purposes. ICSLP Proceedings, 1996.
  27. Muralishankar, R; Ramakrishnan, A.G.; Prathibha, P (2004). «Modification of Pitch using DCT in the Source Domain». Speech Communication. 42 (2): 143–154. doi:10.1016/j.specom.2003.05.001 
  28. L.F. Lamel, J.L. Gauvain, B. Prouts, C. Bouhier, R. Boesch. Generation and Synthesis of Broadcast Messages, Proceedings ESCA-NATO Workshop and Applications of Speech Technology, September 1993.
  29. Dartmouth College: Music and Computers, 1993.
  30. Examples include Star Wars, Firefox, Return of the Jedi, Road Runner, The Empire Strikes Back, Indiana Jones and the Temple of Doom, 720°, Gauntlet, Gauntlet II, A.P.B., Paperboy, RoadBlasters, Vindicators Part II, Escape from the Planet of the Robot Monsters.
  31. John Holmes and Wendy Holmes (2001). Speech Synthesis and Recognition 2nd ed. [S.l.]: CRC. ISBN 0-7484-0856-8 
  32. Lucero, J. C.; Schoentgen, J.; Behlau, M. (2013). «Physics-based synthesis of disordered voices» (PDF). Lyon, France: International Speech Communication Association. Interspeech 2013. Consultado em Aug 27, 2015  Verifique data em: |acessodata= (ajuda)
  33. Englert, Marina; Madazio, Glaucya; Gielow, Ingrid; Lucero, Jorge; Behlau, Mara (2016). «Perceptual error identification of human and synthesized voices». Journal of Voice. doi:10.1016/j.jvoice.2015.07.017 
  34. «The HMM-based Speech Synthesis System». Hts.sp.nitech.ac.j. Consultado em 22 de fevereiro de 2012 
  35. Remez, R.; Rubin, P.; Pisoni, D.; Carrell, T. (22 May 1981). «Speech perception without traditional speech cues» (PDF). Science. 212 (4497): 947–949. PMID 7233191. doi:10.1126/science.7233191  Verifique data em: |data= (ajuda)
  36. «Speech synthesis». World Wide Web Organization 
  37. «Blizzard Challenge». Festvox.org. Consultado em 22 de fevereiro de 2012 
  38. «Smile -and the world can hear you». University of Portsmouth. January 9, 2008. Cópia arquivada em 17 de maio de 2008  Verifique data em: |data= (ajuda)
  39. «Smile - And The World Can Hear You, Even If You Hide». Science Daily. January 2008  Verifique data em: |data= (ajuda)
  40. Drahota, A. (2008). «The vocal communication of different kinds of smile» (PDF). Speech Communication. 50 (4): 278–287. doi:10.1016/j.specom.2007.10.001 
  41. Muralishankar, R.; Ramakrishnan, A. G.; Prathibha, P. (February 2004). «Modification of pitch using DCT in the source domain». Speech Communication. 42 (2): 143–154. doi:10.1016/j.specom.2003.05.001. Consultado em 7 December 2014  Verifique data em: |acessodata=, |data= (ajuda)
  42. Prathosh, A. P.; Ramakrishnan, A. G.; Ananthapadmanabha, T. V. (December 2013). «Epoch extraction based on integrated linear prediction residual using plosion index». IEEE Trans. Audio Speech Language Processing. 21 (12): 2471–2480. doi:10.1109/TASL.2013.2273717. Consultado em 19 December 2014  Verifique data em: |acessodata=, |data= (ajuda)
  43. EE Times. "TI will exit dedicated speech-synthesis chips, transfer products to Sensory." June 14, 2001.
  44. «1400XL/1450XL Speech Handler External Reference Specification» (PDF). Consultado em 22 de fevereiro de 2012 
  45. «It Sure Is Great To Get Out Of That Bag!». folklore.org. Consultado em 24 de março de 2013 
  46. «iPhone: Configuring accessibility features (Including VoiceOver and Zoom)». Apple. Consultado em 29 de janeiro de 2011 
  47. Miner, Jay; et al. (1991). Amiga Hardware Reference Manual 3rd ed. [S.l.]: Addison-Wesley Publishing Company, Inc. ISBN 0-201-56776-8 
  48. Devitt, Francesco (30 June 1995). «Translator Library (Multilingual-speech version)». Consultado em 9 April 2013  Verifique data em: |acessodata=, |data= (ajuda)
  49. «Accessibility Tutorials for Windows XP: Using Narrator». Microsoft. 29 de janeiro de 2011. Consultado em 29 de janeiro de 2011 
  50. «How to configure and use Text-to-Speech in Windows XP and in Windows Vista». Microsoft. 7 de maio de 2007. Consultado em 17 de fevereiro de 2010 
  51. Jean-Michel Trivi (23 de setembro de 2009). «An introduction to Text-To-Speech in Android». Android-developers.blogspot.com. Consultado em 17 de fevereiro de 2010 
  52. Andreas Bischoff, The Pediaphon - Speech Interface to the free Wikipedia Encyclopedia for Mobile Phones, PDA's and MP3-Players, Proceedings of the 18th International Conference on Database and Expert Systems Applications, Pages: 575-579 ISBN 0-7695-2932-1, 2007
  53. «gnuspeech». Gnu.org. Consultado em 17 de fevereiro de 2010 
  54. «Smithsonian Speech Synthesis History Project (SSSHP) 1986-2002». Mindspring.com. Consultado em 17 de fevereiro de 2010 
  55. «Speech Synthesis Software for Anime Announced». Anime News Network. 2 de maio de 2007. Consultado em 17 de fevereiro de 2010 
  56. «Code Geass Speech Synthesizer Service Offered in Japan». Animenewsnetwork.com. 9 de setembro de 2008. Consultado em 17 de fevereiro de 2010 
  57. Erro de citação: Etiqueta <ref> inválida; não foi fornecido texto para as refs de nome :02
  58. Erro de citação: Etiqueta <ref> inválida; não foi fornecido texto para as refs de nome :12

Ligações externas[editar | editar código-fonte]

Informação geral[editar | editar código-fonte]

Sistemas texto-voz gratuitos[editar | editar código-fonte]

Sistemas texto-voz pagos[editar | editar código-fonte]


Categoria:Ciência da computação