Função zeta de Dedekind

Origem: Wikipédia, a enciclopédia livre.

Em matemática, a função zeta de Dedekind é uma série de Dirichlet definida para qualquer corpo numérico algébrico , e notado onde é uma variável complexa. É a soma infinita

onde situa-se entre os ideais não zero do anel de inteiros de . Aqui denota a norma de (ao corpo racional ). É igual à cardinalidade de , em outras palavras, o número de classes residuais de módulo . Esta soma converge absolutamente para todos os números complexos com parte real . No caso esta definição reduz-se à função zeta de Riemann.

As propriedades de como uma função meromorfa leva a ser de considerável significância em teoria algébrica dos números. Ela tem um produto de Euler, o qual é um produto sobre todos os ideais primos de

Esta é a expressão em termos analíticos da fatoração em primos única dos ideais .

É conhecido (provado primeiramente de maneira geral por Erich Hecke) que tem uma extensão analítica a todo o plano complexo como uma função meromórfica, tendo um polo simples somente em s = 1. O resíduo no polo é uma grandeza importante, envolvendo invariantes do grupo unidade e grupo de classe de K; detalhes estão na fórmula de classe numérica. Existe uma equação funcional para a função zeta de Dedekind, relacionando seus valores em s e 1−s.

Para o caso no qual K é uma extensão abeliana de Q, sua função zeta de Dedekind pode ser escrita como o produto de funções L de Dirichlet. Por exemplo, quando K é um corpo quadrático isto mostra que a razão

é uma função L L(s,χ); onde é um símbolo de Jacobi como caráter de Dirichlet. Que a função zeta de um corpo quadrático é um produto da função zeta de Riemann e uma certa função L de Dirichlet é uma formulação analítica da lei de Gauss da reciprocidade quadrática.

Em geral se K é uma extensão de Galois de Q com grupo de Galois G, sua função zeta de Dedekind tem uma fatorização comparável em termos de funções L de Artin. Estas são ligadas a representações lineares de G.

Referências gerais[editar | editar código-fonte]