Saltar para o conteúdo

Equação de Schrödinger: diferenças entre revisões

Origem: Wikipédia, a enciclopédia livre.
Conteúdo apagado Conteúdo adicionado
m Revertidas edições por 189.84.217.124 para a última versão por 201.49.164.123 (usando Huggle)
Linha 42: Linha 42:
* [[Gato de Schrödinger]]
* [[Gato de Schrödinger]]
* [[Nobel de Física]]
* [[Nobel de Física]]
* Constante de Elvis

{{esboço-física}}
{{esboço-física}}



Revisão das 18h22min de 6 de março de 2012


Mecânica quântica
Princípio da Incerteza
Introdução à mecânica quântica

Formulação matemática

Equações
Equação de Schrödinger
Equação de Pauli
Equação de Klein–Gordon
Equação de Dirac

Em Física, a Equação de Schrödinger, proposta pelo físico austríaco Erwin Schrödinger em 1925, descreve a evolução temporal do estado quântico de um sistema físico. Essa equação tem uma importância capital na teoria da mecânica quântica, e seu papel é similar ao da segunda Lei de Newton na Mecânica Clássica.

Pela formulação matemática da mecânica quântica, todo sistema é associado a um espaço de Hilbert complexo, tal que cada estado instantâneo do sistema é descrito por um vetor unitário nesse espaço. Este vetor de estados guarda as probabilidades para os resultados de todas as possíveis medições aplicadas ao sistema. Em geral, o estado de um sistema varia no tempo e o vetor de estados é uma função do tempo. A equação de Schrödinger provê uma descrição quantitativa da taxa de variação deste vetor.

Usando a notação de Dirac, o vetor de estados é dado, num tempo t por |ψ(t)>. A equação de Schrödinger é:

Nas equações, i é o número imaginário, ħ é a constante de Planck dividida por 2π e o Hamiltoniano H(t) é um operador auto-adjunto atuando no vetor de estados. O Hamiltoniano representa a energia total do sistema. Assim como a força na segunda Lei de Newton, ele não é definido pela equação e deve ser determinado pelas propriedades físicas do sistema.


Uma maneira mais didática de observar a Equação de Schrödinger é em sua forma independente do tempo e em uma dimensão. Para tanto, serão necessárias três relações:

Definição de Energia Mecânica:

Equação do Oscilador harmônico:

Relação de De Broglie:

Onde é a função de onda, é o comprimento de onda, h é a constante de Planck e p é o momento linear.

Da Relação de De Broglie, temos que , que pode ser substituída na equação do Oscilador Harmônico:

Rearranjando a equação de energia, temos que , substituindo na equação anterior:

, definindo , temos:

Que é a Equação Independente do Tempo de Schrödinger e também pode ser escrita na notação de operadores:

, em que é o Operador Hamiltoniano operando sobre a função de onda.


Ver também

Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.