Notação Bra-ket

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Mecânica quântica
Princípio da Incerteza
Introducão a...

Formulação matemática

Introdução
Mecânica clássica
Antiga teoria quântica
Interferência · Notação Bra-ket
Hamiltoniano

Notação Bra-ket é uma notação padrão para descrever estados quânticos na teoria da mecânica quântica. Ela também é utilizada para denotar vetores e funcional linear abstratos na matemática pura. É assim chamada por ser o produto interno de dois estados denotados por um bracket, , consistindo de uma parte esquerda, , denominada bra, e uma parte direita, , denominada ket. A notação foi criada por Paul Dirac, e por isso é também conhecida como notação de Dirac.[1][2]

Bras e kets[editar | editar código-fonte]

Uso mais comum: Mecânica quântica[editar | editar código-fonte]

As componentes reais do vetor 3d e a projeção da base; semelhanças entre cálculo notação vetorial e notação de Dirac.

Em mecânica quântica, o estado físico de um sistema é idêntificado como um raio unitário em um espaço de Hilbert separável complexo, , ou, equivalentemente, por um ponto no espaço de Hilbert projetado de um sistema. Cada vetor no raio é chamado um "ket" e escrito como , que deve ser lido como "psi ket".[3]

O ket pode ser visualizado como um vetor coluna e (dada uma base para o espaço de Hilbert) escrito por extenso em componentes,

quando o espaço de Hilbert considerado possuir finitas dimensões. Em espaços de dimensão infinita, há infinitas componentes e o ket deve ser escrito em notação de função, precedido por um bra (veja abaixo). Por exemplo,

Todo ket possui um bra dual, escrito como . Por exemplo, o bra correspondente ao acima deve ser um vetor linha

Isto é um funcional linear contínuo de para os números complexos , definido por:

para todo ket

onde denota o produto interno definido sobre o espaço de Hilbert. Aqui, uma vantagem da notação bra-ket torna-se clara: quando removemos os parênteses (como é comum em funcionais lineares) e fundimos junto com as barra, obtemos , que é a notação comum para produto interno no espaço de Hilbert. Esta combinação de um bra com um ket para formar um número complexo é chamada bra-ket ou bracket.

Em mecânica quântica a expressão (matematicamente o coeficiente para a projeção de em ) é tipicamente interpretada como a amplitude de probabilidade para o estado para o colapso no estado .[4][5][6][7]

Ver também[editar | editar código-fonte]

Referências

  1. PAM Dirac (1939). "A new notation for quantum mechanics". Mathematical Proceedings of the Cambridge Philosophical Society 35 (3): 416–418. doi:10.1017/S0305004100021162. ISSN 0305-0041 (em inglês)
  2. Cajori, Florian (1929). A History Of Mathematical Notations Volume II. Open Court Publishing. p. 134. ISBN 978-0-486-67766-8. (em inglês)
  3. Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-071-45546-9 (em inglês)
  4. Carfì, David (April 2003). «Dirac-orthogonality in the space of tempered distributions». Journal of Computational and Applied Mathematics [S.l.: s.n.] 153 (1–2): 99–107. Bibcode:2003JCoAM.153...99C. doi:10.1016/S0377-0427(02)00634-9. 
  5. Carfì, David (April 2003). «Some properties of a new product in the space of tempered distributions». Journal of Computational and Applied Mathematics [S.l.: s.n.] 153 (1–2): 109–118. Bibcode:2003JCoAM.153..109C. doi:10.1016/S0377-0427(02)00635-0. 
  6. Carfì, David (2007). «TOPOLOGICAL CHARACTERIZATIONS OF S-LINEARITY». AAPP-PHYSICAL, MATHEMATICAL AND NATURAL SCIENCES [S.l.: s.n.] 85 (2): 1–16. doi:10.1478/C1A0702005. 
  7. Carfì, David (2005). «S-DIAGONALIZABLE OPERATORS IN QUANTUM MECHANICS». Glasnik Matematicki [S.l.: s.n.] 40 (2): 261–301. doi:10.3336/gm.40.2.08. 

Bibliografia[editar | editar código-fonte]

  1. J. J. Sakurai, Modern Quantum Mechanics (Revised Edition) , Addison Wesley; 1993 ISBN 0-201-53929-2 (em inglês)



Portal A Wikipédia possui o:
Portal de Ciência
Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.