Eletrostática: diferenças entre revisões

Origem: Wikipédia, a enciclopédia livre.
Conteúdo apagado Conteúdo adicionado
Etiquetas: Editor Visual Edição via dispositivo móvel Edição feita através do sítio móvel
m Foram revertidas as edições de 105.172.61.145 para a última revisão de HVL, de 2016-06-04T10:49:10 (UTC)
Linha 4: Linha 4:


'''Eletrostática''' (do [[Língua grega|grego]] ''elektron + statikos'', ''estacionário'') é o ramo da [[eletricidade]] que estuda as propriedades e o comportamento de [[carga elétrica|cargas elétricas]] em repouso.
'''Eletrostática''' (do [[Língua grega|grego]] ''elektron + statikos'', ''estacionário'') é o ramo da [[eletricidade]] que estuda as propriedades e o comportamento de [[carga elétrica|cargas elétricas]] em repouso.

Geovani Garcia


==Histórico==
==Histórico==

Revisão das 10h15min de 10 de junho de 2016

Eletrostática (do grego elektron + statikos, estacionário) é o ramo da eletricidade que estuda as propriedades e o comportamento de cargas elétricas em repouso.

Histórico

O estudo científico da eletrostática não é dividido em três partes como muita gente pensa: atrito, contato e indução. O fenômeno eletrostático mais antigo conhecido é o que ocorre com o âmbar amarelo no momento em que recebe o atrito e atrai corpos leves.

Tales de Mileto, no século VI a.C., já conhecia o fenômeno e procurava descrever o efeito da eletrostática no âmbar. Também os indianos da antiguidade aqueciam certos cristais que atraiam cinzas quentes atribuindo ao fenômeno causas sobrenaturais. O fenômeno porém, permaneceu através dos tempos apenas como curiosidade.

No século XVI, William Gilbert utilizou a palavra "eletricidade", esta derivada da palavra grega elektron que era o nome que os gregos davam ao âmbar. Gilbert reconheceu que a propriedade eletrostática não era restrita ao âmbar amarelo, mas que diversas outras substâncias também o manifestavam, entre estas diversas resinas, vidros, o enxofre, entre outros compostos sólidos. Através do fenômeno da eletrostática nos sólidos, observou-se a propriedade dos materiais isolantes e condutores.

Otto von Guericke inventou o primeiro dispositivo gerador de eletricidade estática. Esse era constituído de uma esfera giratória composta de enxofre com o qual foi conseguida a primeira centelha elétrica através de máquinas.

Em 1727, Stephen Gray notou que os condutores elétricos poderiam ser eletrizados desde que estivessem isolados. Charles Du Fay descobriu que existiam dois tipos de eletricidade, a vítrea, e a resinosa, a primeira positiva e a segunda negativa.

Petrus Van Musschenbroek em 1745 descobriu a condensação elétrica ao inventar a garrafa de Leyden, o primeiro capacitor, que permitiu aumentar os efeitos das centelhas elétricas. Garrafas de Leyden são usadas até os dias de hoje em Máquinas Eletrostáticas como a Máquina de Wimshurst.

Benjamin Franklin, com sua experiência sobre as descargas atmosféricas, demonstrou o poder das pontas inventando o pára-raios, porém foi Coulomb quem executou o primeiro estudo sistemático e quantitativo da estática demonstrando que as repulsões e atrações elétricas são inversamente proporcionais ao quadrado da distância, em 1785. Descobriu ainda o cientista, que a eletrização ocorrida nos condutores é superficial.

Os resultados obtidos por Coulomb foram retomados e estudados por Pierre Simon Laplace, Siméon-Denis Poisson, Biot, Carl Friederich Gauss e Michel Faraday.

Princípios da eletrostática

Eletrização de um condutor por indução

Átomos que possuem um número igual de elétrons e prótons são considerados eletricamente neutros. Quando um átomo perde elétrons, torna-se um íon positivo (cátion), quando recebe elétrons torna-se um íon negativo (ânion). A carga elétrica quantizada tem como a menor carga a de um elétron ou de um próton. A unidade de carga no Sistema Internacional é o coulomb (C) e equivale a aproximadamente vezes a carga elementar. Materiais condutores, como os metais, em função dos elétrons livres de sua última camada eletrônica são capazes de interagir eletricamente e possuem tendência ao equilíbrio eletrostático. A transferência de carga por indução é facilitada em condutores. Os isolantes possuem forte energia de ligação com seus elétrons, o que dificulta a transferência. A forma mais eficiente de eletrizar um isolante é através do atrito.

Segundo o princípio da conservação da carga elétrica, num sistema eletricamente isolado é constante a soma algébrica das cargas elétricas.

No estudo da eletrostática, a superposição é um fato experimental e podemos dizer que o princípio da superposição mostra que a interação entre duas cargas Q e q ou cargas quaisquer não é modificada pela presença de outras. Uma carga elétrica q, onde sua posição é dada em função do tempo exerce uma força F em outra carga Q de trajetória a ser calculada, em geral as cargas q e Q estão em movimento. Se considerarmos um caso especial da eletrostática no qual as cargas Q são estacionárias e as cargas q possam estar em movimento, então podemos calcular a força F entre duas partículas isoladamente e no caso de varias partículas faremos a soma vetorial de todas essas forças individuais:

A princípio a força em Q depende da distância entre q, da velocidade e da aceleração dessa partícula em algum instante de tempo. A Lei de Coulomb e o Princípio da superposição são fundamentos físicos da eletrostática. [1]

Ferramentas

  • : quantidade de cargas (C)
  • : prótons em excesso
  • : elétrons em excesso
  • : carga elementar
  • : tempo (s)
  • : intensidade da corrente elétrica (A)
  • Carga elétrica elementar (e):
  • Próton:
  • Elétron:

Fórmulas

  • Para se medir a quantidade de carga de um corpo, usa-se:
  • Para calcular a intensidade da corrente elétrica, utiliza: ou

Energia

Ver artigo principal: Energia eletrostática

A energia eletrostática é a energia fornecida por uma distribuição de cargas elétricas estáticas. Nessa distribuição, o trabalho necessário para mover uma determinada carga de lugar ou adicionar outra é devido à energia eletrostática armazenada à configuração.

A energia eletrostática também é conhecida como a energia potencial de um sistema, e não deve ser confundida com o potencial elétrico associado à distribuição de carga. Para evitar confusão, o nome energia potencial deve ser cuidadosamente empregado em eletrostática.

Cálculo

Para duas cargas:

,

onde é a constante de permissividade elétrica do vácuo, e é a distância entre as cargas.

A energia total de uma configuração de cargas, pelo princípio da superposição, é a soma das interações mútuas de cada par de cargas elétricas:

.

O potencial elétrico é definido como a energia potencial por unidade de carga:

.

Para uma distribuição contínua de cargas, como numa densidade volumétrica de carga , podemos definir a energia em função do potencial elétrico:

.

Ver também

Referências

  1. Griffiths, David J. (2011). Eletrodinâmica. São Paulo: Pearson Education do Brasil Ltda. p. 42 a 74. ISBN 978-85-7605-886-1