Pi: diferenças entre revisões

Origem: Wikipédia, a enciclopédia livre.
Conteúdo apagado Conteúdo adicionado
Linha 9: Linha 9:


== Valor de <math>\pi</math> ==
== Valor de <math>\pi</math> ==
O valor de <math>\pi</math> pertence aos [[número irracional|números irracionais]]. Para a maioria dos cálculos simples é comum aproximar <math>{\pi}</math> por 3,14. Uma boa parte das calculadoras científicas de 8 dígitos aproxima <math>\pi</math> por 3,1415927. Para cálculos mais precisos pode-se utilizar <math>\pi \simeq 3,1415926535897932384626433832795</math> com 31 casas decimais.<ref>{{citar livro | titulo = Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables | autor = Milton Abramowitz, Irene A. Stegun | editora = National Bureau of Standards Applied Mathematics Series - 55 | edição = Fifth Printing| ano = 1966}}</ref> Para cálculos ainda mais precisos pode-se obter aproximações de <math>\pi</math> através de algoritmos computacionais. Que foi?
O valor de <math>\pi</math> pertence aos [[número irracional|números irracionais]]. Para a maioria dos cálculos simples é comum aproximar <math>{\pi}</math> por 3,14. Uma boa parte das calculadoras científicas de 8 dígitos aproxima <math>\pi</math> por 3,1415927. Para cálculos mais precisos pode-se utilizar <math>\pi \simeq 3,1415926535897932384626433832795</math> com 31 casas decimais.<ref>{{citar livro | titulo = Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables | autor = Milton Abramowitz, Irene A. Stegun | editora = National Bureau of Standards Applied Mathematics Series - 55 | edição = Fifth Printing| ano = 1966}}</ref> Para cálculos ainda mais precisos pode-se obter aproximações de <math>\pi</math> através de algoritmos computacionais. Mafalda vais morrer hoje.


== Aproximações para <math>\pi</math> ==
== Aproximações para <math>\pi</math> ==

Revisão das 16h13min de 1 de março de 2010

Título a ser usado para criar uma ligação interna é Pi.
 Nota: Se procura outros significados de PI/Pi, veja PI.
 Nota: Se procura o estado brasileiro, veja Piauí.
A letra grega π mínúscula é usada como símbolo do Pi

Na matemática, é uma proporção numérica originado do relação entre as grandezas do perímetro de uma circunferência e seu diâmetro; por outras palavras, se uma circunferência tem perímetro e diâmetro , então aquele número é igual a . É representado pela letra grega π. A letra grega π (lê-se: pi), foi adotada para o número a partir da palavra grega para perímetro, "περίμετρος", provavelmente por William Jones em 1706, e popularizada por Leonhard Euler alguns anos mais tarde. Outros nomes para esta constante são constante circular, constante de Arquimedes ou número de Ludolph.

Notação

Os primeiros a utilizarem a letra grega foram os matemáticos ingleses, mas para designar a circunferência de um círculo. O primeiro a utilizar definição atual[1] foi William Jones. Entretanto foi só após Leonhard Euler utilizá-la que houve aceitação da notação pela comunidade científica.[2]

Valor de

O valor de pertence aos números irracionais. Para a maioria dos cálculos simples é comum aproximar por 3,14. Uma boa parte das calculadoras científicas de 8 dígitos aproxima por 3,1415927. Para cálculos mais precisos pode-se utilizar com 31 casas decimais.[3] Para cálculos ainda mais precisos pode-se obter aproximações de através de algoritmos computacionais. Mafalda vais morrer hoje.

Aproximações para

Desde a Antiguidade, foram encontradas várias aproximações de para o cálculo da área do círculo.[4] Entre os egípcios, por exemplo no papiro de Ahmes, o valor atribuído a seria , embora também seja encontrado o valor .[5][6] Na Bíblia é possível encontrar que os hebreus utilizavam o valor 3 como aproximação de .[5] Entre os babilônios, era comum o uso do valor 3 para calcular a área do círculo, apesar de o valor já ser conhecido como aproximação.[4]

Métodos de cálculo

Existem muitas formas de se obter o valor exato de e alguns métodos aproximados. Consideramos que [[]] é um número irracional e transcendente, de forma que os métodos de cálculo sempre envolvem aproximações, aproximações sucessivas e/ou séries infinitas de somas, multiplicações e divisões.

Método clássico para o cálculo de

Método do clássico para o cálculo de

A primeira tentativa rigorosa de encontrar deve-se a um dos mais conhecidos matemáticos da Antigüidade, Arquimedes. Pela construção de polígonos inscrito e circunscrito de 96 lados encontrou que pi seria entre um valor entre 223/71 e 22/7, ou seja, estaria aproximadamente entre 3,1408 e 3,1429. Tal método é o chamado método clássico para cálculo de de pi.[7]

Ptolomeu, que viveu em Alexandria aproximadamente no século III d.C., calculou pi tomando por base um polígono de 720 lados inscrito numa circunferência de 60 unidades de raio. Seu valor foi aproximadamente 3,1416. Considerando o que sabemos atualmente, sua aproximação foi bem melhor que a de Arquimedes.

A "busca" pelo valor de chegou até à China, onde Liu Hui, um copiador de livros, conseguiu obter o valor 3,14159 com um polígono de 3.072 lados. Mas só no final do século V que o matemático Tsu Ch'ung-chih chegou a uma aproximação melhor: entre 3,1415926 e 3,1415927.

Nesta mesma época, o matemático hindu Aryabhata deixou registrado em versos num livro a seguinte afirmação: "Some-se 4 a 100, multiplique-se por 8 e some-se 62.000. O resultado é aproximadamente uma circunferência de diâmetro 20.000".

Analisando matematicamente e considerando a equação citada anteriormente de :

O valor de , portanto, seria 3,1416. Obviamente, quanto maior o número de casas decimais, melhor a aproximação do valor real de pi. Mas devemos considerar que, na época, isso não era algo fácil de se calcular.

O maior cálculo de casas decimais até o século XV foi 3,1415926535897932 feito pelo matemático árabe al-Kashi. O matemático holandês Ludolph van Ceulen, no final do século XVI, calculou um valor de com 35 casas decimais, começando com um polígono de 15 lados, dobrando o número de lados 37 vezes, e, logo em seguida, aumentando o número de lados. Por curiosidade, a sua esposa mandou gravar no seu túmulo o valor de com as supracitadas 35 casas decimais.

Hoje em dia é relativamente mais fácil, com os computadores modernos que calculam até bilhões de casas decimais para .

Uma aproximação de que apresenta diferença de aproximadamente 2,7e-7 é a seguinte:

Formulação matemática do método de Arquimedes

Baseado no método de Arquimedes é possível formular uma representação matemática para o cálculo de pi, eficiente para um polígono de qualquer número de lados.

Considerando um polígono de n lados e raio 1, temos a medida do lado expressa pela lei dos cossenos:

Temos formado um triângulo isósceles, de base l e lados r=1:




O ângulo do triângulo isósceles no centro do polígono é expresso por 360º dividido pelo número de lados (n), portanto:

Dessa forma, o perímetro do polígono será de:

Como é representado pelo perímetro do polígono dividido pelo seu diâmetro, temos:

Métodos estatísticos

Método Estatístico de Monte-Carlo para o Cálculo de '"`UNIQ--postMath-0000002F-QINU`"'.
Método Estatístico de Monte-Carlo para o Cálculo de .

Outro método interessante para o cálculo de pode ser realizado através de Monte Carlo utilizando-se a estatística. Nesse método são sorteados aleatoriamente pontos num quadrado compreendido entre as coordenadas e . Em seguida calcula-se a distância dos pontos sorteados até a origem O = (0, 0). pode ser aproximado através do número de pontos inscritos na circunferência de raio 1 em relação ao total de pontos sorteados no quadrado de lado 1.

No exemplo ao lado,

Outro método que utiliza a estatística de Monte Carlo para o cálculo de é conhecido como Agulha de Buffon, proposto no século XVIII pelo naturalista francês Georges de Buffon.

Métodos de séries infinitas

O francês François Viète, estudando o método de Arquimedes, desenvolveu a seguinte série para o cálculo de em 1593:

O matemático John Wallis, desenvolveu outra série infinita em 1655:

.

Outra série conhecida para o cálculo de foi desenvolvida por Leibniz em 1682, utilizando-se da série de Taylor para a função arctan(x), tomando-se x=1 e, por conseguinte, arctan(1)=/4.

.

Johann Heinrich Lambert publicou, em 1770, uma série na forma de divisões infinitas:

Métodos de cálculo numérico

Um dos estudos dos métodos de cálculo numérico é obter a raiz de uma função. Quando consideramos a função sabemos que . Os principais métodos do calculo numérico para a obtenção da raiz da função podem incluir uma busca binária no intervalo onde se sabemos que e então podemos aprimorar o intervalo para:

, se e
, se

Partindo-se do intervalo esse método permite refiná-lo sucessivamente para os intervalos

e assim sucessivamente.

Ainda no cálculo numérico, o método de Newton-Raphson, mais eficiente que uma busca binária permite obter aproximações sucessivas para a raiz da função utilizando um ponto inicial exigindo que conheçanos .

Tomando-se e considerando-se que por Newton-Rapson

,

temos a seguinte série para

Um método otimizado de cálculo numérico para o cálculo de através das raízes de uma função pode ser obtido pela simplificação

,

pois na proximidade de , .[8]

Notemos que nesses algoritmos de cálculo numérico considera-se como trancendental, uma vez que a função não pode ser escrita através de um polinômio finito de coeficientes racionais; a função é obtida através da expansão da série de Taylor.

Algoritmo de Gauss-Legendre

O Algoritmo de Gauss-Legendre,[9] que é um método de cálculo numérico de aproximações succesivas, foi utilizado por Yasumasa Kanada para obter o recorde mundial no cálculo de casas decimais de pi em 2002.[10]

Método de cálculo isolado das decimais

Em 1995, David Bailey, em colaboração com Peter Borwein e Simon Plouffe, descobriu uma fórmula de cálculo de π, uma soma infinita (freqüentemente chamada fórmula BBP):

Essa fórmula permite calcular facilmente a enésima decimal binária ou hexadecimal de sem ter que calcular as decimais precedentes. O sítio de Bailey contém sua derivação e implementação em diversas linguagens de programação. Graças a uma fórmula derivada da fórmula BBP, o 4 000 000 000 000 000° algarismo de em base 2 foi obtido em 2001.

Grandezas que dependem de

Várias relações matemáticas dependem do conhecimento da constante , entre elas:

  • Perímetro de uma circunferência:
  • Área do círculo :
  • Volume de uma esfera:

também está nas fórmulas gravitacionais e do eletromagnetismo da física.

Irracionalidade e transcendência de

Johann Heinrich Lambert demonstrou em 1761 que se é racional e diferente de , então nem , nem podem ser racionais . Como , segue-se que é irracional, e portanto que é irracional.[11][12]

Lindemann provou em 1882 que é transcendente utilizando o método utilizado por Hermite para provar que e é transcendente. Isto significa que não pode ser a solução de nenhuma equação algébrica de coeficientes racionais. A transcendência de estabelece a impossibilidade de se resolver o problema da quadratura do círculo: é impossível construir, somente com régua e um compasso euclideanos, um quadrado cuja área seja rigorosamente igual à área de um determinado círculo.

Questões sem resposta

A questão em aberto mais importante é a de saber se é um número normal, isto é, se qualquer sucessão de algarismos aparece nas decimais de , como seria de se esperar em uma seqüência infinita e completamente aleatória de algarismos. Isso deveria ser verdadeiro em qualquer base, e não somente na base 10.

Também não se sabe que algarismos aparecem um número infinito de vezes na constituição de .

Bailey e Crandall demonstraram em 2000 que a existência da fórmula Bailey-Borwein-Plouffe mencionada acima e de fórmulas similares implicam a normalidade de em base 2.

Cronologia do cálculo de

Matemático Ano Casas Decimais
Egípcios (Papiro de Rhind) 1650 A.C. 1
Arquimedes 250 A.C. 3
Zu Chongzhi 480 D.C. 7
Jamshid Masud Al-Kashi 1424 16
Ludolph van Ceulen 1596 35
Jurij Vega 1794 126
William Shanks 1874 527
Levi B. Smith, John W. Wrench 1949 1.120
Daniel Shanks, John W. Wrench 1961 100.265
Jean Guilloud, M. Bouyer 1973 1.000.000
Yasumasa Kanada, Sayaka Yoshino, Yoshiaki Tamura 1982 16.777.206
Yasumasa Kanada, Yoshiaki Tamura, Yoshinobu Kubo 1987 134.217.700
Chudnovskys 1989 1.011.196.691
Yasumasa Kanada, Daisuke Takahashi 1997 51.539.600.000
Yasumasa Kanada, Daisuke Takahashi 1999 206.158.430.000
Yasumasa Kanada 2002 1.241.100.000.000
Daisuke Takahashi 2009 2.600.000.000.000
Fabrice Bellard 2010 2.699.999.990.000 [13]

Ver também

Notas

  1. Ou seja, que π é um número que representa a razão entre o perímetro de uma circunferência e seu diâmetro
  2. Eves (2004) p. 144
  3. Milton Abramowitz, Irene A. Stegun (1966). Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables Fifth Printing ed. [S.l.]: National Bureau of Standards Applied Mathematics Series - 55 
  4. a b Cajori (2007), p. 45
  5. a b Eves (2004), p. 141
  6. Boyer (1996), p. 12
  7. Eves (2004), p. 141 e 142
  8. «O Cálculo do Número Pi» (PDF). 2006  Parâmetro desconhecido |accessdata= ignorado (|acessodata=) sugerido (ajuda)
  9. Harry J. Smith (October 20, 2004). «Gauss-Legendre Algorithm»  Parâmetro desconhecido |accessdata= ignorado (|acessodata=) sugerido (ajuda); Verifique data em: |data= (ajuda)
  10. «Yasumasa Kanada». December 10, 2002  Parâmetro desconhecido |accessdata= ignorado (|acessodata=) sugerido (ajuda); Verifique data em: |data= (ajuda)
  11. Cajori (2007), p. 330
  12. Boyer (1996), p. 320
  13. «Pi Computation Record» 
O Commons possui uma categoria com imagens e outros ficheiros sobre Pi

  • BOYER, C. B. (1996). História da Matemática. Editora Edgard Blücher. [S.l.: s.n.] ISBN 85-212-0023-4  Parâmetro desconhecido |linkautor= ignorado (ajuda)
  • CAJORI, F. (2007). Uma História da Matemática. Editora Ciência Moderna. [S.l.: s.n.] ISBN 978-85-7393-555-4  Parâmetro desconhecido |linkautor= ignorado (ajuda)
  • EVES, H. (2004). Introdução à História da Matemática. Editora Unicamp. [S.l.: s.n.] ISBN 85-268-0657-2  Parâmetro desconhecido |linkautor= ignorado (ajuda)

Ligações externas

Predefinição:Link FA Predefinição:Link FA Predefinição:Link FA Predefinição:Link FA Predefinição:Link FA Predefinição:Link FA Predefinição:Link FA