Usuário:JMagalhães/Notepad302

Origem: Wikipédia, a enciclopédia livre.
 Nota: Este artigo é sobre o vírus. Para a doença, veja COVID-19. Para a pandemia atualmente em curso, veja Pandemia de COVID-19.
Como ler uma infocaixa de taxonomiaCoronavírus da Síndrome Respiratória Aguda Grave 2
Imagem de computador do novo coronavírus
Imagem de computador do novo coronavírus
Classificação científica
Grupo: Grupo IV ((+)ssRNA)
Sem classificação: Vírus
Ordem: Nidovirales
Família: Coronaviridae
Gênero: Betacoronavirus
Distribuição geográfica
Wuhan, China; localização principal do início do surto.
Wuhan, China; localização principal do início do surto.

O vírus da síndrome respiratória aguda grave 2 (SARS-CoV-2),[1][2] anteriormente denominado de forma provisória "2019-nCoV",[3][4][5] é um vírus ARN de cadeia simples positiva.[6][7] É contagioso entre seres humanos e é a causa da doença COVID-19, da qual existe uma pandemia em curso .[8][9]

O SARS-CoV-2 apresenta proximidade genética com os coronavírus de morcegos, dos quais se terá provavelmente originado.[10] [11][12] Pensa-se que antes de ser introduzido aos seres humanos tenha também estado envolvido um reservatório animal intermédio, como o pangolim.[13][14] Do ponto de vista taxonómico, o SARS-CoV-2 está classificado como estirpe da espécie coronavírus relacionado com a síndrome respiratória aguda grave (SARSr-CoV).[1]

Uma vez que a estirpe foi descoberta em Wuhan, na China, é por vezes denominada "vírus de Wuhan virus" ou "coronavírus de Wuhan",[15][16][17][18] embora a Organização Mundial de Saúde (OMS) desaconselhe a utilização de nomes baseados na localização.[19] Para evitar confusão com a doença síndrome respiratória aguda grave (SARS), em comunicados públicos a OMS por vezes refere-se ao vírus como "vírus responsável pela COVID-19" ou "vírus da COVID-19".[20] Tanto o vírus como a doença são muitas vezes denominados "coronavírus" pelo público em geral, embora cientistas e jornalistas usem termos mais precisos.[21]

Virologia[editar | editar código-fonte]

Infeção[editar | editar código-fonte]

A transmissão do SARS-CoV-2 entre seres humanos foi confirmada pela primeira vez durante a pandemia de coronavírus de 2019-20.[9] A principal forma de transmissão são gotículas produzidas no sistema respiratório e expulsas ao tossir ou espirrar até um raio de 1,8 m.[22][23] Outra possível causa de infeção é o contacto indireto através de superfícies contaminadas.[24] A investigação preliminar sugere que o vírus possa permanecer ativo em plástico e aço até três dias, embora não consiga sobreviver em cartão mais do que um dia ou em cobre mais do que quatro horas.[25] Foi também observado ARN viral em fezes de pacientes infetados.[26]

Ainda não é claro se o vírus é infecioso durante o período de incubação.[27] Em 1 de fevereiro de 2020 a OMS indicava que "a transmissão a partir de casos assintomáticos provavelmente não é uma das principais formas de transmissão".[28] Acredita-se que a maior parte das infeções em seres humanos seja o resultado de transmissão entre pessoas que manifestam sintomas de COVID-19. No entanto, um modelo epidemiológico do início so surto na China sugere que a transmissão pré-sintomática pode ser típica entre as infeções documentadas.[29]

Reservatório[editar | editar código-fonte]

SARS-CoV-2 a emergir de uma célula humana em laboratório (coloração digital)

A OMS considera serem os morcegos o mais provável reservatório natural de SARS-CoV-2,[30] embora algumas diferenças entre os coronavírus dos morcegos e o SARS-CoV-2 sugiram que os seres humanos foram infetados através de um hospedeiro intermédio.[31]

As primeiras infeções conhecidas pela estirpe SARS-CoV-2 foram descobertas em Wuhan, na China.[10] Ainda não é claro qual foi a fonte original de transmissão viral para os seres humanos nem quando é que a estirpe se tornou patogénica,[32][33][34][35] embora já se tenha determinado que a estirpe é de origem natural.[35] A investigação do reservatório natural da estirpe de vírus que causou a pandemia de SARS em 2002-2004 permitiu a descoberta de diversos coronavírus semelhantes à SARS em morcegos, a maior parte com origem no género Rhinolophus dos morcegos-de-ferradura, e duas sequências de ácido nucleico encontradas em amostras de Rhinolophus sinicus revelaram uma semelhança de 80% em relação ao SARS-CoV-2.[12][36][37] Uma terceira sequência de ácido nucleico de Rhinolophus affinis recolhida na província de Yunnan revelou uma semelhança de 96% em relação ao SARS-CoV-2.[10][38]

Um estudo metagenómico publicado em 2019 concliui que o SARS-CoV, a estirpe que causa a SARS, era o coronavírus com maior distribuição entre uma amostra de pangolins-malaio.[39] Em 7 de fevereiro de 2020, foi anunciado que investigadores de Guangzhou tinham descoberto uma amostra de pangolim com uma sequência de ácido nucleico 99% idêntica ao SARS-CoV-2,[40] com a diferença apenas de um aminoácido.[41] Embora a lei chinesa proteja os pangolins, a sua captura e comércio ilegais para uso na medicina tradicional chinesa continuam a ser comuns.[42]

Em paralelo, microbiólogos e geneticistas no Texas encontraram evidências de rearranjo em coronavírus, o que sugere o envolvimento de pangolins na origem do SARS-CoV-2.[43] No entanto, os coronavírus em pangolins encontrados até hoje partilham apenas 92% do genoma com o SARS-CoV-2, o que é insuficiente para provar que os pangolins sejam o hospediro intermédio. Em comparação, o vírus SARS responsável pelo surto de 2002-2004 partilhava 99,8% do seu genoma com os coronavírus da civeta.[31]

Filogenética e taxonomia[editar | editar código-fonte]

O SARS-CoV-2 pertence a uma grande família de vírus denominada coronavírus. É um vírus ARN de cadeia simples positiva (+ssRNA). Os coronavírus têm a capacidade de causar várias doenças em seres humanos, desde a simples constipação até doenças mais graves como a síndrome respiratória do Médio Oriente (MERS). O SARS-CoV-2 é o sétimo coronavírus conhecido a poder infetar seres humanos, sendo os restantes o 229E, NL63, OC43, HKU1, MERS-Cov e o SARS-CoV original.[44]

Tal como a estirpe que causou o surto de SARS em 2003, o SARS-CoV-2 é um membro do sug-género Sarbecovirus (betacoronavírus linhagem B).[45][46][47] A sua sequência de ARN tem o comprimento de aproximadamente 30 000 nucleobases.[7] No entanto, o SARS-CoV-2 é o único dos coronavírus a incorporar um local de clivagem polibásico, uma característica que se sabe aumentar a patogenicidade e ritmo reprodutivo de outros vírus.[35][48][49]

A partir de um número suficiente de genomas sequenciados, é possível reconstruir a árvore filogenética do historial de mutações de uma família de vírus. Em 12 de janeiro de 2020 foram isolados em Wuhan cinco genomas de SARS-CoV-2.[7][50] Em 30 de janeiro de 2020 eram conhecidos 42 genomas.[51] Uma análise filogenética dessas amostras revelou estarem relacionados até sete mutações com um ancestral comum, o que significa que a primeira ineção em seres humanos ocorreu em novembro ou dezembro de 2019.[51] Em 13 de março de 2020 estavam já amostrados e disponíveis publicamente 410 genomas de SARS-CoV-2.[52]

Em 11 defevereiro de 2020, o Comité Internacional de Taxonomia de Vírus anunciou que, de acordo com as regras vigentes que determinam as relações hierárquicas entre os coronavírus com base nas sequência conservadas dos ácidos nucleicos, as diferenças entre o SARS-CoV-2 e o SARS-CoV responsável pelo surto de SARS eram insuficientes para serem classificados como duas espécies virais diferentes. Desta forma, o SARS-CoV-2 foi classificado como estirpe dos coronavírus associados à síndrome respiratória aguda (SARSr-CoV).[1]

Biologia estrutural[editar | editar código-fonte]

Ilustração de um virião de coronavírus

Cada virião de SARS-CoV-2 mede aproximadamente 50–200 nanómetros de diâmetro.[53] Tal como outros coronavírus, o SARS-CoV-2 tem quatro proteínas estruturais, conhecidas como proteínas S (spike), E (envelope), M (membrana) e N (nucleocapsídeo). A proteína N contém o genoma ARN e em conjunto as proteínas S, E e M criam o envelope viral.[54] A proteína S é a proteína que permite ao vírus ligar-se à membrana celular de uma célula hospedeira.[54]

As primeiras experiências de modelação de proteínas na proteína S do vírus sugeriram que o SARS-CoV-2 tinha suficiente afinidade com os receptores de Enzima conversora da angiotensina 2 (ACE2) nas células humanas para as usar como mecanismo de penetração celular.[55] Em 22 de janeiro de 2020, um grupo chinês e um grupo norte-americano, de forma independente, conseguiram demonstrar experimentalmente que a ACE2 podia ser o receptor do SARS-CoV-2.[10][56][57][58][59][60] Vários estudos têm demonstrado que o SARS-CoV-2 tem uma maior afinidade com a ACE2 humana do que a estirpe de SARS original.[61] O SARS-CoV-2 pode também usar a proteína basigina para penetrar nas células do hospedeiro.[62] Para a penetração do SARS-CoV-2 também é fundamental o priming inicial da proteína S através de TMPRSS2.[63] O SARS-CoV-2 produz pelo menos três fatores de virulência que promovem a libertação de novos viriões das células hospediras e inibem a resposta imunitária.[54]

Epidemiologia[editar | editar código-fonte]

Ver artigo principal: Pandemia de COVID-19
Micrografia por MET de viriões de SARS-CoV-2 (a vermelho) isolados de um paciente

Com base na baixa variabilidade verificada entre as sequências genómicas conhecidas de SARS-CoV-2, pensa-se que a estirpe tenha sido detectada pelas autoridades apenas poucas semanas após ter emergido entre a população humana no fim de 2019.[32][64] O caso mais antigo de infeção humana de que se tem conhecimento data de 17 de novembro de 2029.[65] Posteriormente, o vírus espalhou-se para todas as províncias da China e mais de cem países em todos os continentes.[66] Em todos os continentes foram confrimadas transmissões entre seres humanos.[9][67][68][69][70][71] Em 30 de janeiro de 2020, a OMS declarou o SARS-CoV-2 uma Emergência de Saúde Pública de Âmbito Internacional,[8][72] e em 11 de março uma pandemia.[73][74]

À data de 14 de abril de 2024 a pandemia tinha resultado em 775 335 902[66] casos confirmados de infeção em todo o mundo, dos quais 7 045 569[66] tinham resultado em morte e [66] tinham recuperado. Embora a proporção de infeções que resulta em infeções confirmadas ou que avolui para doenga diagnosticável permaneça incerta,[75] um modelo matemático estimou que o número de pessoas infetadas apenas em Wuhan em 25 de janeiro de 2020 tenha sido de 75 815, data em que as infeções confirmadas eram bastante inferiores.[76]

Estima-se que o ritmo reprodutivo () do vírus seja de entre 1,4 e 3,9.[77][78] Isto significa que é esperado que cada infeção pelo vírus resulte em 1,4 a 3,9 novas ineções quando nenhum membro da comunidade é imune e não é tomada nenhuma medida preventiva.

Referências

  1. a b c Gobalenya AE, Baker SC, Baric RS, et al. (março de 2020). «The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2». Nature Microbiology: 1–9. PMID 32123347. doi:10.1038/s41564-020-0695-z 
  2. «Coronavirus disease named Covid-19». BBC News Online. 11 de fevereiro de 2020. Consultado em 15 de fevereiro de 2020. Cópia arquivada em 15 de fevereiro de 2020 
  3. World Health Organization (2020). Surveillance case definitions for human infection with novel coronavirus (nCoV): interim guidance v1, January 2020 (Relatório). World Health Organization. hdl:10665/330376. WHO/2019-nCoV/Surveillance/v2020.1 
  4. «Healthcare Professionals: Frequently Asked Questions and Answers». United States Centers for Disease Control and Prevention (CDC). 11 de fevereiro de 2020. Consultado em 15 de fevereiro de 2020. Arquivado do original em 14 de fevereiro de 2020 
  5. «About Novel Coronavirus (2019-nCoV)». United States Centers for Disease Control and Prevention (CDC). 11 de fevereiro de 2020. Consultado em 25 de fevereiro de 2020. Arquivado do original em 11 de fevereiro de 2020 
  6. «New-type coronavirus causes pneumonia in Wuhan: expert». Xinhua. Consultado em 9 de janeiro de 2020. Cópia arquivada em 9 de janeiro de 2020 
  7. a b c «CoV2020». GISAID EpifluDB. Consultado em 12 de janeiro de 2020. Cópia arquivada em 12 de janeiro de 2020  Verifique o valor de |url-access=registration (ajuda)
  8. a b Wee SL, McNeil Jr. DG, Hernández JC (30 de janeiro de 2020). «W.H.O. Declares Global Emergency as Wuhan Coronavirus Spreads». The New York Times. Consultado em 30 de janeiro de 2020. Cópia arquivada em 30 de janeiro de 2020 
  9. a b c Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. (fevereiro de 2020). «A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster». The Lancet. 395 (10223): 514–523. PMID 31986261. doi:10.1016/S0140-6736(20)30154-9 
  10. a b c d Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. (fevereiro de 2020). «A pneumonia outbreak associated with a new coronavirus of probable bat origin». Nature. 579 (7798): 270–273. PMID 32015507. doi:10.1038/s41586-020-2012-7 
  11. Perlman S (fevereiro de 2020). «Another Decade, Another Coronavirus». The New England Journal of Medicine. 382 (8): 760–762. PMID 31978944. doi:10.1056/NEJMe2001126 
  12. a b Benvenuto D, Giovanetti M, Ciccozzi A, Spoto S, Angeletti S, Ciccozzi M (abril de 2020). «The 2019-new coronavirus epidemic: Evidence for virus evolution». Journal of Medical Virology. 92 (4): 455–459. PMID 31994738. doi:10.1002/jmv.25688 
  13. World Health Organization (2020). Novel Coronavirus (2019-nCoV): situation report, 22 (Relatório). World Health Organization. hdl:10665/330991 
  14. Shield C (7 de fevereiro de 2020). «Coronavirus: From bats to pangolins, how do viruses reach us?». Deutsche Welle. Consultado em 13 de março de 2020 
  15. Huang P (22 de janeiro de 2020). «How Does Wuhan Coronavirus Compare with MERS, SARS and the Common Cold?». NPR. Consultado em 3 de fevereiro de 2020. Cópia arquivada em 2 de fevereiro de 2020 
  16. Fox D (24 de janeiro de 2020). «What you need to know about the Wuhan coronavirus». Nature. ISSN 0028-0836. doi:10.1038/d41586-020-00209-y 
  17. Yam K (12 de março de 2020). «GOP lawmakers continue to use 'Wuhan virus' or 'Chinese coronavirus'». NBC News. Consultado em 19 de março de 2020 
  18. Dorman S (11 de março de 2020). «McCarthy knocks Dems after they claim saying 'Chinese coronavirus' is racist». Fox News. Consultado em 12 de março de 2020 
  19. World Health Organization (2015). World Health Organization best practices for the naming of new human infectious diseases (Relatório). World Health Organization. hdl:10665/163636. WHO/HSE/FOS/15.1 
  20. «Naming the coronavirus disease (COVID-2019) and the virus that causes it». World Health Organization. Consultado em 24 de fevereiro de 2020. From a risk communications perspective, using the name SARS can have unintended consequences in terms of creating unnecessary fear for some populations.... For that reason and others, WHO has begun referring to the virus as "the virus responsible for COVID-19" or "the COVID-19 virus" when communicating with the public. Neither of these designations are [sic] intended as replacements for the official name of the virus as agreed by the ICTV. 
  21. Harmon A (4 de março de 2020). «We Spoke to Six Americans with Coronavirus». The New York Times. Consultado em 16 de março de 2020 
  22. Edwards E (25 de janeiro de 2020). «How does coronavirus spread?». NBC News. Consultado em 13 de março de 2020. Cópia arquivada em 28 de janeiro de 2020 
  23. «How COVID-19 Spreads». U.S. Centers for Disease Control and Prevention (CDC). 27 de janeiro de 2020. Consultado em 29 de janeiro de 2020. Cópia arquivada em 28 de janeiro de 2020 
  24. «Getting your workplace ready for COVID-19» (PDF). World Health Organization. 27 de fevereiro de 2020. Consultado em 3 de março de 2020 
  25. van Doremalen N, Bushmaker T, Morris DH, et al. (17 de março de 2020). «Correspondence: Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1». The New England Journal of Medicine. PMID 32182409. doi:10.1056/NEJMc2004973 
  26. Holshue ML, DeBolt C, Lindquist S, et al. (março de 2020). «First Case of 2019 Novel Coronavirus in the United States». The New England Journal of Medicine. 382 (10): 929–936. PMID 32004427. doi:10.1056/NEJMoa2001191 
  27. Kupferschmidt K (fevereiro de 2020). «Study claiming new coronavirus can be transmitted by people without symptoms was flawed». Science. doi:10.1126/science.abb1524 
  28. World Health Organization (2020). Novel Coronavirus (2019-nCoV): situation report, 12 (Relatório). World Health Organization. hdl:10665/330777 
  29. Li R, Pei S, Chen B, et al. (16 de março de 2020). «Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2)». Science: eabb3221. PMID 32179701. doi:10.1126/science.abb3221. Consultado em 17 de março de 2020 
  30. «Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19)» (PDF). World Health Organization (WHO). 24 de fevereiro de 2020. Consultado em 5 de março de 2020 
  31. a b Cyranoski D (26 de fevereiro de 2020). «Mystery deepens over animal source of coronavirus». Nature. 579 (7797): 18–19. PMID 32127703. doi:10.1038/d41586-020-00548-w 
  32. a b Cohen J (janeiro de 2020). «Wuhan seafood market may not be source of novel virus spreading globally». Science. ISSN 0036-8075. doi:10.1126/science.abb0611 
  33. Eschner K (28 de janeiro de 2020). «We're still not sure where the Wuhan coronavirus really came from». Popular Science. Consultado em 30 de janeiro de 2020. Cópia arquivada em 29 de janeiro de 2020 
  34. Yu WB, Tang GD, Zhang L, Corlett RT (21 de fevereiro de 2020). «Decoding evolution and transmissions of novel pneumonia coronavirus using the whole genomic data». doi:10.12074/202002.00033 (inativo 26 de fevereiro de 2020) 
  35. a b c Andersen KG, Rambaut A, Lipkin WI, et al. (17 de março de 2020). «Correspondence: The proximal origin of SARS-CoV-2». Nature Medicine. doi:10.1038/s41591-020-0820-9. Consultado em 18 de março de 2020 
  36. «Bat SARS-like coronavirus isolate bat-SL-CoVZC45, complete genome». National Center for Biotechnology Information (NCBI). 15 de fevereiro de 2020. Consultado em 15 de fevereiro de 2020 
  37. «Bat SARS-like coronavirus isolate bat-SL-CoVZXC21, complete genome». National Center for Biotechnology Information (NCBI). 15 de fevereiro de 2020. Consultado em 15 de fevereiro de 2020 
  38. «Bat coronavirus isolate RaTG13, complete genome». National Center for Biotechnology Information (NCBI). 10 de fevereiro de 2020. Consultado em 5 de março de 2020 
  39. Liu P, Chen W, Chen JP (outubro de 2019). «Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins (Manis javanica)». Viruses. 11 (11). 979 páginas. PMC 6893680Acessível livremente. PMID 31652964. doi:10.3390/v11110979 
  40. Cyranoski D (7 de fevereiro de 2020). «Did pangolins spread the China coronavirus to people?». Nature. doi:10.1038/d41586-020-00364-2 
  41. Xiao K, Zhai J, Feng Y (fevereiro de 2020). «Isolation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins». bioRxiv (preprint). doi:10.1101/2020.02.17.951335 
  42. Kelly, Guy (1 de janeiro de 2015). «Pangolins: 13 facts about the world's most hunted animal». The Telegraph. Consultado em 9 de março de 2020 
  43. Wong MC, Cregeen SJ, Ajami NJ, Petrosino JF (fevereiro de 2020). «Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019». bioRxiv (preprint). doi:10.1101/2020.02.07.939207 
  44. Zhu N, Zhang D, Wang W, et al. (fevereiro de 2020). «A Novel Coronavirus from Patients with Pneumonia in China, 2019». The New England Journal of Medicine. 382 (8): 727–733. PMID 31978945. doi:10.1056/NEJMoa2001017 
  45. Hui DS, I Azhar E, Madani TA, et al. (fevereiro de 2020). «The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China». International Journal of Infectious Diseases. 91: 264–266. PMID 31953166. doi:10.1016/j.ijid.2020.01.009  publicação de acesso livre - leitura gratuita
  46. «Phylogeny of SARS-like betacoronaviruses». nextstrain. Consultado em 18 de janeiro de 2020. Cópia arquivada em 20 de janeiro de 2020 
  47. Wong AC, Li X, Lau SK, Woo PC (fevereiro de 2019). «Global Epidemiology of Bat Coronaviruses». Viruses. 11 (2). 174 páginas. PMC 6409556Acessível livremente. PMID 30791586. doi:10.3390/v11020174 
  48. Walls AC, Park YJ, Tortorici MA, et al. (9 de março de 2020). «Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein». Cell. PMID 32155444. doi:10.1016/j.cell.2020.02.058 
  49. Coutard B, Valle C, de Lamballerie X, et al. (fevereiro de 2020). «The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade». Antiviral Research. 176. 104742 páginas. PMID 32057769. doi:10.1016/j.antiviral.2020.104742 
  50. «Initial genome release of novel coronavirus». Virological. 11 de janeiro de 2020. Consultado em 12 de janeiro de 2020. Cópia arquivada em 12 de janeiro de 2020 
  51. a b Bedford T, Neher R, Hadfield N, et al. «Genomic analysis of nCoV spread: Situation report 2020-01-30». nextstrain.org. Consultado em 18 de março de 2020 
  52. Hodcroft E, Müller N, Wagner C, et al. «Genomic analysis of COVID-19 spread: Situation report 2020-03-13». nextstrain.org. Consultado em 18 de março de 2020 
  53. Chen N, Zhou M, Dong X, et al. (15 de fevereiro de 2020). «Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study». The Lancet. 395 (10223): 507–513. PMID 32007143. doi:10.1016/S0140-6736(20)30211-7 
  54. a b c Wu C, Liu Y, Yang Y, et al. (fevereiro de 2020). «Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods». Acta Pharmaceutica Sinica B. doi:10.1016/j.apsb.2020.02.008 
  55. Xu X, Chen P, Wang J, et al. (março de 2020). «Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission». Science China Life Sciences. 63 (3): 457–460. PMID 32009228. doi:10.1007/s11427-020-1637-5 
  56. Letko M, Munster V (janeiro de 2020). «Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV». bioRxiv (preprint). doi:10.1101/2020.01.22.915660 
  57. Letko M, Marzi A, Munster V (fevereiro de 2020). «Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses». Nature Microbiology. PMID 32094589. doi:10.1038/s41564-020-0688-y 
  58. El Sahly HM. «Genomic Characterization of the 2019 Novel Coronavirus». The New England Journal of Medicine. Consultado em 9 de fevereiro de 2020 
  59. Gralinski LE, Menachery VD (janeiro de 2020). «Return of the Coronavirus: 2019-nCoV». Viruses. 12 (2). 135 páginas. PMID 31991541. doi:10.3390/v12020135 
  60. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. (fevereiro de 2020). «Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding». The Lancet. 395 (10224): 565–574. PMID 32007145. doi:10.1016/S0140-6736(20)30251-8 
  61. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. (fevereiro de 2020). «Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation». Science. 367 (6483): 1260–1263. PMID 32075877. doi:10.1126/science.abb2507 
  62. Wang K, Chen W, Zhou YS, et al. (2020). «SARS-CoV-2 invades host cells via a novel route: CD147-spike protein». bioRxiv (preprint). doi:10.1101/2020.03.14.988345 
  63. Hoffman M, Kliene-Weber H, Krüger N, et al. (16 de abril de 2020). «SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor». Cell. 181: 1–10. PMID 32142651. doi:10.1016/j.cell.2020.02.052 
  64. Oberholzer M, Febbo P (19 de fevereiro de 2020). «What We Know Today about Coronavirus SARS-CoV-2 and Where Do We Go from Here». Genetic Engineering and Biotechnology News. Consultado em 13 de março de 2020 
  65. Ma J (13 de março de 2020). «Coronavirus: China's first confirmed Covid-19 case traced back to November 17». South China Morning Post. Consultado em 16 de março de 2020 
  66. a b c d «Coronavirus Pandemic (COVID-19)». ourworldindata.org (em inglês). Our World In Data. 14 de abril de 2024. Consultado em 29 de abril de 2024 
  67. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al. (março de 2020). «Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany». The New England Journal of Medicine. 382 (10): 970–971. PMID 32003551. doi:10.1056/NEJMc2001468 
  68. Molteni M (30 de janeiro de 2020). «The Coronavirus Is Now Infecting More People Outside China». Wired. Consultado em 13 de março de 2020 
  69. Khalik S (4 de fevereiro de 2020). «Coronavirus: Singapore reports first cases of local transmission; 4 out of 6 new cases did not travel to China». The Straits Times. Consultado em 5 de fevereiro de 2020. Cópia arquivada em 4 de fevereiro de 2020 
  70. «Ecuador confirms five new cases of coronavirus, all close to initial patient». Reuters. 2 de março de 2020. Consultado em 5 de março de 2020 
  71. «Algeria confirms two more coronavirus cases». Reuters. 2 de março de 2020. Consultado em 5 de março de 2020 
  72. «Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV)». World Health Organization (WHO) (Nota de imprensa). 30 de janeiro de 2020. Consultado em 30 de janeiro de 2020. Cópia arquivada em 31 de janeiro de 2020 
  73. McKay B, Calfas J, Ansari T (11 de março de 2020). «Coronavirus Declared Pandemic by World Health Organization». The Wall Street Journal. Consultado em 12 de março de 2020 
  74. «WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020». World Health Organization (WHO) (Nota de imprensa). 11 de março de 2020. Consultado em 12 de março de 2020 
  75. Branswell H (30 de janeiro de 2020). «Limited data on coronavirus may be skewing assumptions about severity». STAT. Consultado em 13 de março de 2020. Cópia arquivada em 1 de fevereiro de 2020 
  76. Wu JT, Leung K, Leung GM (fevereiro de 2020). «Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study». The Lancet. 395 (10225): 689–697. PMID 32014114. doi:10.1016/S0140-6736(20)30260-9 
  77. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. (janeiro de 2020). «Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia». The New England Journal of Medicine. PMID 31995857. doi:10.1056/NEJMoa2001316 
  78. Riou J, Althaus CL (janeiro de 2020). «Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020». Euro Surveillance. 25 (4). PMC 7001239Acessível livremente. PMID 32019669. doi:10.2807/1560-7917.ES.2020.25.4.2000058 

Bibliografia[editar | editar código-fonte]

  • Brüssow H (março de 2020). «The Novel Coronavirus – A Snapshot of Current Knowledge». Microbial Biotechnology. 2020: 1–6. PMID 32144890. doi:10.1111/1751-7915.13557 
  • Habibzadeh P, Stoneman EK (fevereiro de 2020). «The Novel Coronavirus: A Bird's Eye View». The International Journal of Occupational and Environmental Medicine. 11 (2): 65–71. PMID 32020915. doi:10.15171/ijoem.2020.1921 
  • World Health Organization (2 de março de 2020). Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: interim guidance, 2 March 2020 (Relatório). World Health Organization. hdl:10665/331329. WHO/COVID-19/laboratory/2020.4. License: CC BY-NC-SA 3.0 

Ligações externas[editar | editar código-fonte]

O Commons possui uma categoria com imagens e outros ficheiros sobre JMagalhães/Notepad302
Wikispecies
Wikispecies
O Wikispecies tem informações sobre: JMagalhães/Notepad302