Forma do universo

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Cosmologia
WMAP 2008.png
Universo · Big Bang
Idade do universo
Cronologia do Universo
Derradeiro destino do Universo

A forma do universo é um nome informal de um tema de investigação dentro da cosmologia. Os cosmólogos e os astrônomos descrevem a geometria do universo que inclui a geometria local, ou seja, a forma do universo observável e a geometria global, que trata de descrever o espaço-tempo completo. Está indiretamente dividido em curvatura e topologia, inclusive ainda que estritamente falando, pertença a ambos.

Introdução[editar | editar código-fonte]

Ao nível do universo observável, é a teoria da relatividade que gera as geometrias que se descrevem, baseadas na distância no espaço-tempo. A geometria local também pode ser descrita pela geometria tridimensional tradicional (euclidiana). De fato, a geometria local, junto com a observação direta e outras medidas astronômicas, é utilizada para reduzir as possibilidades da geometria global em uma topologia tridimensional. No estudo da geometria global, para propor a forma do universo se dispõe da teoria da relatividade e das demais restrições impostas pela geometria do universo observável.

Algumas teorias propõe o universo como tendo uma forma plana, o que quer dizer que, partindo desde um ponto exato, se pode percorrer o universo linearmente e infinitamente. Pelo contrário, outras teorias afirmam que o universo é circular ou esférico, com uma forma análoga a de um balão o de uma bolha. Isto quer dizer que, percorrendo o universo linearmente em qualquer direção, sempre passaremos pelo mesmo lugar novamente. O universo neste caso seria finito.

Alguns estudos, da NASA e outros, mostram que, seguindo com a teoria da relatividade e o tempo, de alguma forma as imagens percebidas se distorcem apenas localmente seguindo uma curva. Isto indicaria que o universo em sua maior extensão observável e medível é plano,1 2 com somente 2% de margem de erro estimado nas medições.3

Geometria local (curvatura espacial)[editar | editar código-fonte]

A geometria local é a que corresponde à curvatura que descreve qualquer ponto arbitrário no universo observável (feita uma média sobre uma escala suficientemente grande). Muitas observações astronômicas, tais como as de uma supernova e as da radiação de fundo de microondas, mostram um universo observável bastante homogêneo e isotrópico, e se deduz que sua expansão está em aceleração (isto leva a uma representação do espaço-tempo reduzida à três dimensões não ao formato de cone, mas de um "trompete" 4 ). Na Relatividade Geral, é modelada pela Métrica de Friedman-Lemaître-Robertson-Walker. Este modelo, que pode ser representado pelas Equações de Friedmann, proporciona uma curvatura (comumente chamada geometria) do universo baseado na matemática da dinâmica dos fluidos5 , por exemplo modelando a matéria dentro do universo como um fluido perfeito.6 7 Ainda que as estrelas e grandes estruturas possam ser chamadas como um "quase modelo FLRW", quer dizer que supõe homogeneidade e isotropia e que se assume que o componente espacial da métrica pode ser dependente do tempo, estritamente um modelo FLRW é usado para aproximar a geometria local do universo observável.

Outro caminho para estabelecer a geometria local propõe que, se todas as formas de energia escura são ignoradas, então a curvatura do universo pode ser determinada medindo a densidade média da matéria que está dentro dele, assumindo que toda a matéria está distribuída uniformemente (melhor que as distorções são causadas por objetos 'densos' como galáxias). Esta suposição é justificada pelas observações que, quando o universo é "debilmente" heterogêneo, está sobre a média homogêneo e isotrópico. O universo homogêneo e isotrópico dá lugar a uma interpretação da geometria espacial com uma curvatura constante. Um aspecto da geometria local, surgida da aplicação da Relatividade Geral e o modelo de FLRW, é que o parâmetro de densidade, Omega (Ω), está relacionado com a curvatura de espaço. Omega é a densidade média do universo dividida pela densidade da energia crítica, quer dizer a requerida para que o universo seja plano (sem curvatura). A curvatura do espaço é uma descrição matemática que se baseia se a hipótese do teorema Pitagórico é realmente válida para ser aplicada em coordenadas espaciais no mundo físico. Nesta suposição, o teorema proporciona uma fórmula alternativa para expressar relações locais entre distâncias.

Se a curvatura é zero, então Ω = 1, e o Teorema de Pitágoras é correto em ser aplicado ao mundo físico. Se pelo contrário Ω > 1, haverá uma curvatura positiva, e se Ω < 1, haverá uma curvatura negativa; em qualquer destes dois casos o teorema de Pitágoras seria incorreto em ser aplicado a realidade (mas as discrepâncias só se podem detectar nos triângulos cujas longitudes de seus lados são de uma escala cosmológica, preservando uma geometria clássica para as pequenas distâncias e situações não relativísticas). Se medem-se as circunferências dos círculos de diâmetros regularmente maiores e se dividem o antigo pelo posterior, as três geometrias nos dão o valor π para os diâmetros suficientemente pequenos, mas o raio não deixa de ser π para diâmetros maiores, a não ser que π = 1. Para Ω > 1 (a esfera, ver diagrama) o raio é menor que π: de fato, um grande círculo em uma esfera tem uma circunferência somente duas vezes seu diâmetro. Para Ω < 1 , a relação de transformação nos dá maior que π.

As medidas astronômicas da densidade da matéria-energia dos intervalos do universo e do espaço-tempo que usam eventos de supernovas obrigam a curvatura espacial a ser muito próxima de zero, ainda que não obriguem sua certeza8 e tais medidas apresentam profundas implicações para toda a cosmologia.9 10 Isto significa que as geometrias locais são geradas pela teoria da relatividade baseada em intervalos de espaço-tempo, e podem se aproximar da Geometria Euclidiana.

Geometrias locais[editar | editar código-fonte]

Existem três categorias para as possíveis geometrias espaciais de curvatura constante, dependendo do sinal da curvatura. Se a curvatura é exatamente zero, então a geometria local é plana; se é positiva, então a geometria é esférica, e se é negativa então a geometria local é hiperbólica.

A geometria local do universo se determina aproximadamente Ômega é menor que, igual a ou maior que 1. De cima para baixo: um universo esférico ("riemanniano" ou de curvatura positiva), um universo hiperbólico ("lobachevskiano" ou de curvatura negativa) , e um universo plano ou de curvatura 0.

A geometria do universo é usualmente representada no sistema de distância apropriada, segundo a qual a expansão do universo pode ser ignorada.
As coordenadas da distância apropriada formam um só marco de referência segundo o qual o universo possui uma geometria estática de três dimensões espaciais.

Assumindo-se que o universo é homogêneo e isotrópico, a curvatura do universo observável, ou da geometria local, está descrita em uma das três geometrias "primitivas":

Inclusive, se o universo não é exatamente plano, a curvatura espacial está o bastante próxima de zero para por o raio aproximadamente no horizonte do universo observável, ou mais além.

Na geometria clássica euclidiana, o quinto postulado leva a estas conclusões: por um ponto só pode passar uma reta paralela (de fato a definição típica de paralela é a de uma reta que nunca se encontra com outra). Disto também se conclui que a soma dos ângulos internos dos triângulos é sempre = 180°


Translation Latin Alphabet.svg
Este artigo ou secção está a ser traduzido de en:Forma del universo. Ajude e colabore com a tradução.

Referências[editar | editar código-fonte]

  1. Chandra Sees Shape of Universe During Formative, Adolescent Years - chandra.harvard.edu (em inglês)
  2. Neil J. Cornish and Jeffrey R. Weeks; Measuring the Shape of the Universe; NOTICES OF THE AMS; DECEMBER 1998 - www.ams.org (em inglês)
  3. Measurements from WMAP - map.gsfc.nasa.gov (em inglês)
  4. Big Bang glow hints at funnel-shaped Universe - www.newscientist.com (em inglês)
  5. A. J. Fennelly; The weight, shape, and speed of the universe; General Relativity and Gravitation; Volume 15, Number 5 / May, 1983; DOI 10.1007/BF00759940 www.springerlink.com (em inglês)
  6. A. Banerjee; et al.; Inhomogeneous perfect fluid cosmologies in (4+1) dimensions; Astrophysics and Space Science; Volume 239, Number 1 / May, 1996; DOI 10.1007/BF00653774 - www.springerlink.com (em inglês)
  7. Alberto A. Garcia and Steve Carlip; n-dimensional generalizations of the Friedmann–Robertson–Walker cosmology; Physics Letters B Volume 645, Issues 2-3, 8 February 2007, Pages 101-107 - www.sciencedirect.com (em inglês)
  8. WMAP and Dark Matter / Dark energy - map.gsfc.nasa.gov
  9. D. N. Spergel, et al.; Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology; ApJS, 170, 377 (2007) - arxiv.org (em inglês)
  10. Bo Feng, et al.; An inflation model with large variations in the spectral index; hys. Rev. D 68, 103511 (2003) - prola.aps.org (em inglês)

Ver também[editar | editar código-fonte]

Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.