Raio atómico

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Raio atômico médio

O raio atômico (português brasileiro) ou raio atómico (português europeu) é a distância do núcleo à ultima camada eletrônica. Ao contrário do que se poderia pensar, o raio atômico não depende apenas do peso do átomo e/ou da quantidade de elétrons presentes na eletrosfera. É também fortemente afetado pela eletronegatividade de cada elemento.[1] [2]

Simplificadamente, o raio atômico é a distância entre o centro do átomo e a sua camada de valência, que é o nível de energia com elétrons mais externo deste átomo. Como consequência do átomo não ser rígido é impossível calcular o seu raio atômico exato. Deste modo, calcula-se o seu raio atômico médio.[1]

Devido a dificuldade em obter-se o raio de átomos isolados determina-se ( através de raio X ) a distância entre os núcleos de dois átomos ligados do mesmo elemento, no estado gasoso. O raio atômico será metade da distância calculada.

Energia ou potencial de ionização é a energia mínima requerida para arrancar um elétron de um átomo. Em uma família cresce de baixo para cima, a medida em que as camadas eletrônicas aumentam, sendo o elétron menos atraído pelo núcleo. No período, cresce da esquerda para a direita, acompanhando o crescimento do número atômico (Z), o que faz a camada de valência ficar mais próxima do núcleo.

A eletronegatividade (também denominada de caráter ametálico) é uma propriedade periódica que mede a tendência relativa de um átomo ou molécula em atrair elétrons, quando combinado em uma ligação covalente. A eletronegatividade de um átomo está intimamente relacionada com o seu raio atômico, visto que quão menor o raio atômico, maior a força exercida pelas partículas positivas do núcleo sobre elétrons próximos.

Os valores da eletronegatividade são determinados quando os átomos estão combinados. Por isso, os gases nobres, que em condições normais são inertes, não apresentam valor de eletronegatividade. Duas escalas de eletronegatividade são comumente utilizadas: a escala Pauling (proposta em 1932) e a escala Mulliken (proposta em 1934). Outra escala proposta foi a escala Allred-Rochow.

Com sentido oposto à eletronegatividade, a eletropositividade (também denominado de caráter metálico) é uma propriedade periódica que mede a tendência relativa de um átomo de perder elétrons. Os metais apresentam elevadas eletropositividades, pois uma de suas principais características é a grande capacidade de perder elétrons. Entre o tamanho do átomo e sua eletropositividade há uma relação genérica, uma vez que quanto maior o tamanho do átomo, menor a atração exercida pelo núcleo sobre os elétrons mais externos, portanto, maior a facilidade do átomo em perder elétrons. [3]

Propriedades[editar | editar código-fonte]

Os núcleos atômicos encontram-se, em condições normais, no seu estado fundamental. Algumas propriedades observáveis podem ser extraídas desses núcleos. O raio nuclear é uma das propriedades mais fáceis de observar e pode ser obtido a partir de experiências de dispersão como as realizadas por Rutherford. Como base nessas experiências, percebeu-se que era uma boa aproximação considerar o raio nuclear R como relacionado à massa nuclear pela expressão

R=r_0A^{1/3}

Onde \scriptstyle r_0=(1.3\pm 0.1)\times  10^{-13}\;cm. O raio nuclear determina a forma da distribuição angular, a partir da qual se pode então calculá-lo.[4]

Partículas Alfa[editar | editar código-fonte]

Seção de choque para o espalhamento de partículas alfa pelo chumbo a 60°, no sistema do laboratório.

Uma experiência de espalhamento elástico envolvendo núcleos pesados foi feita em 1954 por Farwell e Wegner. Com energia intermediária de 13 a 43 MeV usando um cíclotron de 60 polegadas.

O resultado obtido envolvendo uma amostra de Pb (chumbo) a 60º esta reproduzido na figura. A curva de Coulomb corrigida está normalizada pelos dados experimentais de baixa energia. Esta curva segue aproximadamente a dependência com o inverso do quadrado da seção de choque de Coulomb (Rutherford) com a energia, mas está levemente alterada a fim de levar em conta pequenas variações do ângulo de espalhamento com a energia devido ao campo magnético do cíclotron.[5]

Em baixas energias observa-se a teoria do espalhamento de Rutherford correta, porém a partir de energias por volta de 27 MeV, com o aumento da energia de partícula alfa a seção do choque cai rapidamente, obrigando-se a partir disso adotarmos outros modelos afim de explicar a aproximação da partícula alfa do núcleo atômico .

Tendo essas dúvidas em cheque, os cientistas Farwell e Wegner baseados em um modelo apresentado por Blair, que explicava as absorções de partículas alfa pelo núcleo.

Blair supôs que a soma dos raios nuclear com a partícula alfa seria aproximadamente igual à distância de máxima aproximação calculada na energia para a qual a seção de choque experimental é 1/4 da seção de choque Coulomb. Tendo a expressão:

D_{1/4}=R_n+R_\alpha

Onde D1/4 é a distância de máxima aproximação, Rn é o raio do núcleo e R α.

Raio atômico medido empiricamente[editar | editar código-fonte]

Raio atômico medido empíricamente em picômetros (pm) com uma precisão aproximada de 5 pm.[6]

Grupo (vertical) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Período (horizontal)
1 H
25
He
 
2 Li
145
Be
105
B
85
C
70
N
65
O
60
F
50
Ne
 
3 Na
180
Mg
150
Al
125
Si
110
P
100
S
100
Cl
100
Ar
71
4 K
220
Ca
180
Sc
160
Ti
140
V
135
Cr
140
Mn
140
Fe
140
Co
135
Ni
135
Cu
135
Zn
135
Ga
130
Ge
125
As
115
Se
115
Br
115
Kr
 
5 Rb
235
Sr
200
Y
180
Zr
155
Nb
145
Mo
145
Tc
135
Ru
130
Rh
135
Pd
140
Ag
160
Cd
155
In
155
Sn
145
Sb
145
Te
140
I
140
Xe
 
6 Cs
260
Ba
215
*
 
Hf
155
Ta
145
W
135
Re
135
Os
130
Ir
135
Pt
135
Au
135
Hg
150
Tl
190
Pb
180
Bi
160
Po
190
At
 
Rn
 
7 Fr
 
Ra
215
**
 
Rf
 
Db
 
Sg
 
Bh
 
Hs
 
Mt
 
Ds
 
Rg
 
Uub
 
Uut
 
Uuq
 
Uup
 
Uuh
 
Uus
 
Uuo
 
Lantanídios *
 
La
195
Ce
185
Pr
185
Nd
185
Pm
185
Sm
185
Eu
185
Gd
180
Tb
175
Dy
175
Ho
175
Er
175
Tm
175
Yb
175
Lu
175
Actinídios **
 
Ac
195
Th
180
Pa
180
U
175
Np
175
Pu
175
Am
175
Cm
 
Bk
 
Cf
 
Es
 
Fm
 
Md
 
No
 
Lr
 

Raio atômico calculado[editar | editar código-fonte]

Raio atômico calculado em picômetros (pm)

Grupo (vertical) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Período (horizontal)
1 H
53
He
31
2 Li
167
Be
112
B
87
C
67
N
56
O
48
F
42
Ne
38
3 Na
190
Mg
145
Al
118
Si
111
P
98
S
88
Cl
79
Ar
71
4 K
243
Ca
194
Sc
184
Ti
176
V
171
Cr
166
Mn
161
Fe
156
Co
152
Ni
149
Cu
145
Zn
142
Ga
136
Ge
125
As
114
Se
103
Br
94
Kr
88
5 Rb
265
Sr
219
Y
212
Zr
206
Nb
198
Mo
190
Tc
183
Ru
178
Rh
173
Pd
169
Ag
165
Cd
161
In
156
Sn
145
Sb
133
Te
123
I
115
Xe
108
6 Cs
298
Ba
253
*
 
Hf
208
Ta
200
W
193
Re
188
Os
185
Ir
180
Pt
177
Au
174
Hg
171
Tl
156
Pb
154
Bi
143
Po
135
At
 
Rn
120
7 Fr
 
Ra
 
**
 
Rf
 
Db
 
Sg
 
Bh
 
Hs
 
Mt
 
Ds
 
Rg
 
Uub
 
Uut
 
Uuq
 
Uup
 
Uuh
 
Uus
 
Uuo
 
Lantanídios *
 
La
 
Ce
 
Pr
247
Nd
206
Pm
205
Sm
238
Eu
231
Gd
233
Tb
225
Dy
228
Ho
 
Er
226
Tm
222
Yb
222
Lu
217
Actinídios **
 
Ac
 
Th
 
Pa
 
U
 
Np
 
Pu
 
Am
 
Cm
 
Bk
 
Cf
 
Es
 
Fm
 
Md
 
No
 
Lr
 

Veja também[editar | editar código-fonte]

Referências

  1. a b Júlio César Lima Lira (17/06/2010). Raio Atômico.
  2. CrystalMaker Software Ltd. Elements, Atomic Radii and the Periodic Table.
  3. Usberco; Salvador. Química 1. 9ª ed. [S.l.]: Editora Saraiva, 2000.
  4. K. C. Chung. Introdução à Física Nuclear (em português). 1 ed. [S.l.]: UERJ, 2009. 285 p. 1 vol. ISBN 9788575110157
  5. K. C. Chung. Introdução à Física Nuclear (em português). 1 ed. [S.l.]: UERJ, 2009. 285 p. 1 vol. ISBN 9788575110157
  6. Slater, J.C. Introduction To Chemical Physics (em Inglês). [S.l.]: Martindell Press, 2007. 536 p. ISBN 978-1406717594