Saltar para o conteúdo

Termodinâmica: diferenças entre revisões

Origem: Wikipédia, a enciclopédia livre.
Conteúdo apagado Conteúdo adicionado
m r2.7.1+) (Robô: A adicionar: mr:ऊष्मगतिकी
Linha 1: Linha 1:
A '''Termodinâmica''' (do [[Língua grega|grego]] θερμη, ''therme'', significa "[[calor]]"<ref group="Ref." name ="OxfordDic" /> e δυναμις, ''dynamis,'' significa "[[potência]]") é o ramo da [[Física]] que estuda as causas e os efeitos de mudanças na [[temperatura]], [[pressão]] e [[volume]] - e de outras [[grandeza termodinâmica|grandezas termodinâmicas]] fundamentais em casos menos gerais - em sistemas físicos em [[escala macroscópica]]. [[Grosso modo]], [[calor]] significa "[[energia]]" em trânsito, e dinâmica se relaciona com "movimento". Por isso, em essência, a Termodinâmica estuda o movimento da energia e como a energia cria movimento. Historicamente, a Termodinâmica se desenvolveu pela necessidade de aumentar-se a eficiência das primeiras máquinas a vapor <ref group = "Ref." name = "OnTheMotivePowerOfHeat" />, sendo em essência uma ciência experimental, que diz respeito apenas a propriedades macroscópicas ou de grande escala da matéria e energia <ref group = "Ref." name= "LivrodoSears" />.
A '''Termodinâmica''' (do [[Língua grega|grego]] θερμη, ''therme'', significa "[[sorveteria]]"<ref group="Ref." name ="OxfordDic" /> e δυναμις, ''dynamis,'' significa "[[maconha]]") é o ramo da [[Física]] que estuda as causas e os efeitos de mudanças na [[temperatura]], [[pressão]] e [[volume]] - e de outras [[grandeza termodinâmica|grandezas termodinâmicas]] fundamentais em casos minas gerais - em sistemas físicos em [[escala macroscópica]]. [[Grosso modo]], [[calor]] significa "[[energia]]" em trânsito, e dinâmica se relaciona com "movimento". Por isso, em essência, a Termodinâmica estuda o movimento da energia e como a energia cria movimento sem terra MST. Historicamente, a Termodinâmica se desenvolveu pela necessidade de aumentar-se a eficiência das primeiras máquinas a vapor <ref group = "Ref." name = "OnTheMotivePowerOfHeat" />, sendo em essência uma ciência experimental, que diz respeito apenas a propriedades macroscópicas ou de grande escala da matéria e energia <ref group = "Ref." name= "LivrodoSears" />.
{{Física geral|fórmula=<math>\Delta U = W + Q ~</math>|idfórmula=[[Primeira lei da termodinâmica]]}}
{{Física geral|fórmula=<math>\Delta U = W + Q ~</math>|idfórmula=[[Primeira lei da termodinâmica]]}}



Revisão das 15h11min de 18 de agosto de 2011

A Termodinâmica (do grego θερμη, therme, significa "sorveteria"[Ref. 1] e δυναμις, dynamis, significa "maconha") é o ramo da Física que estuda as causas e os efeitos de mudanças na temperatura, pressão e volume - e de outras grandezas termodinâmicas fundamentais em casos minas gerais - em sistemas físicos em escala macroscópica. Grosso modo, calor significa "energia" em trânsito, e dinâmica se relaciona com "movimento". Por isso, em essência, a Termodinâmica estuda o movimento da energia e como a energia cria movimento sem terra MST. Historicamente, a Termodinâmica se desenvolveu pela necessidade de aumentar-se a eficiência das primeiras máquinas a vapor [Ref. 2], sendo em essência uma ciência experimental, que diz respeito apenas a propriedades macroscópicas ou de grande escala da matéria e energia [Ref. 3].

Física geral
Primeira lei da termodinâmica
Física
História da Física
Filosofia da Física


Considerações históricas

Sadi Carnot (1796-1832)
Wikilivros
Wikilivros

A breve história da termodinâmica começa com Guericke, que em 1650 projetou e construiu a primeira bomba de vácuo do mundo, e o primeiro vácuo artificial do mundo, através das hemisférios de Magdeburgo. Ele foi incentivado pela busca em provar a invalidade da antiga percepção de que "a natureza tem horror ao vácuo" e de que não poderia haver vazio ou vácuo, "pois no vácuo todos os corpos cairiam com a mesma velocidade" tal como descreveu em ambos os casos Aristóteles.

Logo após este evento, o físico e químico Irlandês Robert Boyle tomou ciência dos experimentos de Guericke, e em 1656, em coordenação com o cientista Inglês Robert Hooke, construiu uma bomba de ar.[Ref. 4] Usando esta bomba, Boyle e Hooke perceberam uma correlação entre pressão, temperatura e volume. Em tempo, a Lei de Boyle foi formulada, que estabelece que a pressão e o volume são inversamente proporcionais. Então, em 1679, baseado nestes conceitos, um conhecido de Boyle chamado Denis Papin construiu um forno de pressão (marmita de Papin), que era um vaso fechado com uma tampa fechada hermeticamente que confinava o vapor até alta pressão ser gerada.

Projetos posteriores incluíram uma válvula de alívio para o vapor, evitando que o recipiente explodisse devido à alta pressão. Observando o movimento rítmico da válvula de alívio para cima e para baixo, Papin concebeu a idéia de uma máquina constituída de um pistão e um cilindro. Mas Papin não seguiu adiante com a idéia. Foi somente em 1697, baseado nas idéias de Papin, que o engenheiro Thomas Savery construiu a primeira máquina a vapor. Embora nesta época as máquinas fossem brutas e ineficientes, elas atraíram a atenção dos principais cientistas da época. Um destes cientistas foi Sadi Carnot, o "pai da termodinâmica", que em 1824 publicou "Reflexões sobre a Potência Motriz do Fogo", um discurso sobre o calor, potência e eficiência de máquina. O texto trouxe as relações energéticas básicas entre a máquina de Carnot, o ciclo de Carnot e a potência motriz. Isto marcou o início da Termodinâmica como ciência moderna.[Ref. 5].

Algumas ideias relevantes

Diagrama de um sistema termodinâmico típico: uma máquina térmica cíclica. Parte da energia admitida - oriunda de uma fonte quente (em vermelho, à esquerda) - é convertida em trabalho (movimento) - neste caso, por uma série de pistões. Contudo, em máquinas cíclicas não se pode converter toda a energia oriunda da fonte quente em trabalho, havendo necessariamente uma quantidade mínima de energia rejeitada a uma fonte fria (em azul, à direita).

É bastante conhecido o fato de que qualquer porção de matéria ou determinada substância ser constituída por um número muito grande de partículas microscópicas fundamentais - átomos ou moléculas conforme o caso, em geral, ou outrem, em casos mais específicos [Nota 1]. Embora a termodinâmica utilize - quando disponíveis - as propriedades microscópicas de um sistema de partículas para inferir suas propriedades macroscópicas, a termodinâmica não descreve as propriedades microscópicas deste. As propriedades termodinâmicas deste sistema de partículas são determinadas apenas por suas propriedades macroscópicas.

Partindo de um ponto de vista puramente macroscópico para o estudo do sistema - que não requer o conhecimento do comportamento individual das partículas microscópicas que integram o mesmo - desenvolveu-se a chamada termodinâmica clássica. Ela permite abordar de uma maneira fácil e direta os problemas correlatos ao comportamento da matéria e energia em tal escala e as soluções para os mesmos. Uma abordagem mais elaborada, baseada no comportamento médio de grandes grupos de partículas, é chamada de termodinâmica estatística.[Ref. 5] [Ref. 6]. A termodinâmica estatística trouxe respostas, entre outros, quanto à natureza de conceitos como energia interna e temperatura associados aos sistemas termodinâmicos, e neste âmbito, a termodinâmica pode ser definida como a área de estudos que descreve e analisa o comportamento macroscópico de sistemas constituídos por um número de partículas o necessariamente alto - no limite termodinâmico, "infinito" - para inviabilizar a análise prática do mesmo mediante a análise individual de cada partícula que o compõe.

O ponto inicial para a maioria das considerações termodinâmicas são as Leis da Termodinâmica, que postulam as características intrínsecas a todo sistema termodinâmico, e também que a energia pode ser transferida de um sistema físico para outro como calor ou trabalho [Nota 2] [Ref. 7]. Elas também postulam a existência de uma quantidade chamada entropia, que pode ser definida para qualquer sistema.[Ref. 8].

Em Termodinâmica, interações entre sistemas são particularmente enfocadas, estudadas e categorizadas. Para este estudo, os conceitos de sistema e vizinhanças são centrais - e por tal também são de extrema relevância as características das fronteiras que os definem. Um sistema termodinâmico é composto de "infinitas" partículas encerradas dentro de uma fronteira, cujos movimento e inter-relacionamento médios ou totais definem suas propriedades termodinâmicas, cujas relações são expressas através de equações de estado, sendo estas certamente de vital relevância ao estudo temodinâmico de tais sistemas. Tais propriedades podem também ser adequadamente combinadas de forma a expressar a energia interna ou os demais potenciais termodinâmicos - ou a entropia e suas transformadas - como equações fundamentais - que são extremamente úteis na compreensão e análise das condições de equilíbrio e em processos ou transformações, espontâneos ou não, associados ao sistema. Uma equação fundamental, ao contrário de uma equação de estado, sempre encerra em si todas as informações termodinâmicas do sistema à qual se associa. Ao conjunto de todos os sistemas com o quais o sistema em foco se relaciona através de fronteiras comuns dá-se o nome de vizinhança. Ao conjunto de todos os sistemas pertinentes dá-se o nome de universo.

Com suas ferramentas - o formalismo da termodinâmica - a termodinâmica descreve não apenas os sistemas mas também como os sistemas respondem a mudanças em sua vizinhança. Isso pode ser aplicado a uma ampla variedade de tópicos em ciência e tecnologia, como por exemplo, máquinas, transições de fases, reações químicas, fenômenos de transporte e até buracos negros. Os resultados da termodinâmica são essenciais para outros campos da física e da química, engenharia química, engenharia aeroespacial, engenharia mecânica, biologia celular, engenharia biomédica, ciências dos materiais e economia, para citar alguns.[Ref. 9][Ref. 10]

Transformações e Processos

Sempre que duas [Nota 3] ou mais propriedades de um sistema variam, diz-se que ocorreu um processo. Sempre que há mudança entre estados de equilíbrio há um processo. Um processo é geralmente descrito por um diagrama identificando os sucessivos estados pelo qual passa o sistema durante o transcurso do mesmo. Um processo de quase-equilíbrio (quase-estático) é aquele em que o desvio do equilíbrio termodinâmico ao ir-se de um estado de equilíbrio ao subsequente é infinitesimal, de forma que o sistema pode ser considerado a qualquer momento como estando em um dos estados de equilíbrio. Assim um processo quase estático se aproxima muito de uma sucessão de estados de equilíbrio, e tais processos têm diagramas representativos descritos por linhas, e não por pontos não intercalados, em um diagrama de estados[Ref. 3]. Muitos processos reais, geralmente os processos lentos, podem ser considerados com razoável precisão como sendo processos de quase-equilíbrio. Vários outros - entre os quais os processos que ocorrem de forma brusca - não.

O termo "transformação" é normalmente utilizado para referenciar um processo quase-estático.

Princípios da Termodinâmica

Princípio zero: entrando em equilíbrio

O princípio básico sobre o qual a termodinâmica se assenta é [Nota 4]: dado um sistema isolado - envolto por uma fronteira completamente restritiva em relação à troca de energia ou matéria - haverá um estado em particular, caracterizado pela constância de todas as grandezas termodinâmicas mensuráveis (temperatura, pressões parciais, volume das fases, etc.), que, uma vez dado tempo suficiente para as transformações necessárias ocorrerem, sempre será atingido. Os valores a serem assumidos pelas grandezas no estado de equilíbrio encontram-se univocamente determinados desde o estabelecimento da fronteira e do sistema, dependendo estes, em sistemas simples, apenas do número e natureza das partículas, do volume e da energia interna encerrados no sistema. Tal estado final de equilíbrio do sistema é nomeado estado de equilíbrio termodinâmico. A rigor define-se temperatura apenas para o estado de equilíbrio termodinâmico, não se definindo em princípio a mesma grandeza para sistemas fora do equilíbrio.

O princípio zero ainda engloba o raciocínio de que, se dois sistemas A e B - cada qual já em seu respectivo estado de equilíbrio - forem colocados um a um em contato de forma adequada com um sistema C, e verificar-se experimentalmente que estes mantiveram os respectivos estados de equilíbrio originais, estes estarão não apenas em equilíbrio com C mas também estarão em equilíbrio entre si, de forma que também manterão seus respectivos estados de equilíbrio originais se colocados em contato mediante fronteira semelhante. Considera-se para tal geralmente uma fronteira não restritiva apenas quanto à troca de calor, caso em que se fala em equilíbrio térmico . Tal princípio implica, pois: se a temperatura de A e B são iguais à de C, as temperaturas de A e B serão também necessariamente iguais. Se a fronteira não for restritiva quanto à troca de energia em qualquer de suas formas - calor ou trabalho - mas o for ainda em relação à troca de matéria, falar-se-á em equilíbrio térmico e mecânico. Neste caso, não somente suas temperaturas mas também suas pressões serão iguais. Se a fronteira for completamente irrestritiva, permitindo inclusive a troca de matéria e reações químicas, falar-se-á em equilíbrio térmico, mecânico e (eletro)químico, ou seja, em equilíbrio termodinâmico [Ref. 3].

Este princípio básico - conhecido por razões cronológicas e históricas como princípio zero da termodinâmica - é o que possibilita a definição macroscópica de temperatura e também a construção de termômetros.

Princípio primeiro: conservando a energia

Observação: a compreensão do que se segue exige o conhecimento das definições de: energia, energia interna, energia térmica, temperatura (absoluta), energia potencial, pressão, volume, calor e trabalho. Solicita-se a leitura dos artigos específicos caso estes conceitos não se mostrem familiares.

De acordo com o princípio da Conservação da Energia, a energia não pode ser criada nem destruída, mas somente transformada de uma espécie em outra. O primeiro princípio da Termodinâmica estabelece uma equivalência entre o trabalho e o calor trocados entre um sistema e seu meio exterior no que se refira à variação da energia interna do sistema.

Considere um sistema e sua vizinhança, em uma situação tal que uma certa quantidade de calor Q tenha atravessado a fronteira comum aos dois (devido à diferença de temperaturas entre ambos). Considere também que a fronteira comum entre os sistemas se mova neste processo, implicando em energia trocada na forma de trabalho entre ambos. Neste caso a variação na energia interna do sistema em foco é expressa por:

[Ref. 11][Ref. 3]

A expressão acima representa analiticamente o primeiro princípio da termodinâmica, cujo enunciado pode ser:

" a variação da energia interna de um sistema é igual à diferença entre o calor e o trabalho trocados pelo sistema com o meio exterior."

Considerando-se para fins ilustrativos um sistema composto por um gás com apenas movimentos translacionais (isso é, monoatômico) e sem interação potencial entre partículas, a variação de energia interna pode ser determinada por

[Ref. 11][Ref. 3],

onde n é o número de mols do gás, R é a constante dos gases, a temperatura final e a temperatura inicial do gás.

Repare que para um gás ideal a variação em sua energia interna está associada apenas à variação em sua temperatura. Transformações isotérmicas envolvendo um gás ideal implicam portanto que o trabalho W realizado pelo sistema sobre a vizinhança iguala-se em módulo ao calor que entra no sistema oriundo da vizinhança.

Para a aplicação do primeiro princípio de Termodinâmica devem-se respeitar as seguintes convenções [Ref. 11][Ref. 3]:

  • Q > 0: calor é recebido pelo sistema oriundo de sua vizinhança.
  • Q < 0: calor cedido pelo sistema à vizinhança.
  • W > 0: volume do sistema aumenta; o sistema realiza trabalho sobre a vizinhança (cujo volume diminui).
  • W < 0: volume do sistema diminui; o sistema recebe energia na forma de trabalho oriunda de sua vizinhança (cujo volume aumenta).
  • > 0: a energia interna do sistema aumenta.
  • < 0: a energia interna do sistema diminui.

É muito comum associar-se de forma errônea o aumento da energia interna em um sistema a um aumento em sua temperatura. Embora esta relação mostre-se verdadeira para a maioria dos sistemas, ao rigor da análise esta associação não procede. Alguns exemplos bem simples, como a combustão de vapor de gasolina e oxigênio em um cilindro de automóvel - que por ser muito rápida, pode ser considerada um processo adiabático - ou uma simples mistura de sal e gelo, mostram que não há uma relação estrita entre energia interna e temperatura, mas sim entre energia térmica e temperatura.

A transformação que leva o sistema termodinâmico do estado A até o estado B é isobárica.

Na combustão do vapor de gasolina e oxigênio formam-se vapor de água e gás carbônico que, ao fim, estão em temperatura muito maior do que a temperatura dos reagentes. Contudo a energia interna do sistema não varia. O que ocorre é a transformação de parte da energia potencial - uma das parcelas que integram a energia interna - do sistema em energia térmica, a outra parcela que a integra. Como o aumento na energia térmica é inteiramente oriundo da diminuição da energia potencial (energia química) do sistema, a energia interna permanece a mesma, e não há variação na energia interna do sistema, mesmo observando-se um enorme aumento em sua temperatura.

Caso contrário é observado em um sistema composto por gelo e sal mantidos separados. Removendo-se a fronteira que os separa, a temperatura da mistura salina que se forma cai drasticamente, contudo a energia interna do sistema, assumido envolto por uma fronteira completamente restritiva (um sistema isolado), permanece constante. Parte da energia térmica é utilizada para romper-se as ligações iônicas associada à forma cristalina do sal - liquefazendo a mistura - e transformando-se por tal em energia potencial. O decréscimo na energia térmica é contudo compensado pelo acréscimo na energia potencial, de forma que a energia interna - conforme exigido pela fronteira restritiva - não varia, embora a temperatura caia substancialmente.

Podemos dizer que a energia interna do sistema é uma função de estado pois ela depende unicamente dos valores assumidos pelas variáveis de estado do sistema, e não da forma como tais variáveis assumiram tais valores. Em outras palavras, a energia interna de uma xícara de café quente com mesma composição química, mesma concentração, mesma massa, quando submetida à mesma pressão, volume e temperatura, será sempre a mesma, independente de como se fez o café, ou se este foi feito agora, ou requentado.

Repare que a energia interna é função apenas da temperatura somente para casos especiais, como o caso do gás ideal. Para casos genéricos não pode-se assumir tal conjectura como verdadeira. A energia interna pode depender da pressão, do volume, e de qualquer outra grandeza termodinâmica de forma explicita.


Quanto ao trabalho realizado pelo sistema sobre sua vizinhança, este pode ser facilmente determinado em transformações isobáricas - aquelas nas quais a pressão permanece constante - por:

[Ref. 11][Ref. 3]

onde V2 e V1 representam os volumes final e inicial do sistema, respectivamente. Repare a convenção a origem da convenção de sinais: quando o gás realiza trabalho sobre o meio - expandindo-se contra a pressão imposta pelo mesmo e gastando parte de sua energia interna para tal - o sinal do trabalho é positivo (volume aumenta), o qual, substituído na expressão matemática do primeiro princípio, implica um decréscimo da energia interna do sistema em virtude do sinal negativo presente nesta última expressão.

Em casos mais complexos, o trabalho pode ser determinado através de um diagrama de pressão x volume para a transformação sofrida. Este corresponde à área sob a região determinada pelos estados inicial, final, e pela curva associada (vide figuras abaixo).

Princípio segundo: uma passagem só de ida

A termodinâmica permite determinar a direção na qual vários processos físicos e químicos irão ocorrer espontaneamente, e as condições para que possam ser revertidos (reversibilidade). Permite também determinar quais processos podem ocorrer, e quais não podem (irreversibilidade). Também permite determinar as inter-relações entre as diversas propriedades de uma substância, a exemplo calor específico, coeficiente de dilatação volumétrica, compressibilidade, e demais. Contudo ela não encerra em sua descrição macroscópica dados relativos aos modelos da microestrutura da substância, e não é capaz de fornecer detalhes dela partindo-se apenas das grandezas macroscópicas. Contudo, uma vez que a estrutura microscópica do sistema seja previamente conhecida, através do método da termodinâmica clássica e estatística, as propriedades e o comportamento termodinâmicos do sistema podem ser em princípio facilmente determinados [Ref. 3].

Em sistemas adiabáticos determinados processos ocorrem em sentido único, sendo impossível, sem violar-se a restrição adiabática imposta pela barreira, regressar-se ao estado original. Associado à irreversibilidade de tais processos tem-se a segunda lei da termodinâmica: em processos adiabáticos, a entropia do sistema permanece constante ou aumenta, contudo nunca diminui. Se um processo qualquer - geralmente processos bruscos, como a expansão livre - implicar em aumento da entropia do sistema, o estado inicial - de menor entropia - torna-se inacessível ao sistema sem violação da restrição imposta. Após uma expansão livre não consegue-se mais retornar às mesmas condições de pressão, volume e temperatura iniciais sem a violação da fronteira adiabática do sistema [Ref. 3].

A 2ª Lei da termodinâmica estabelece portanto uma seta para o tempo: estabelece em essência a possibilidade de se definir com precisão uma ordem cronológica para uma série de eventos relacionados. Estabelece que energia cinética macroscópicamente mensurável pode sempre reduzir-se, mediante trabalho, a calor, e desta forma acabar fazendo parte das entranhas de um sistema termodinâmico - ou seja, da energia interna deste - contudo o processo inverso jamais ocorre com rendimento de 100%. Calor oriundo da energia interna de um sistema não pode ser totalmente convertido em trabalho, e por tal jamais é completamente convertido em energia cinética macroscopicamente mensurável. Decorre desta certamente considerações estimulantes tanto de ordem filosóficas como de ordem científica ligadas às implicações da mesma, a exemplo considerações sobre a possível morte térmica do universo[Ref. 11].

Transformações termodinâmicas particulares

Transformação isotérmica [Ref. 11][Ref. 12]: transformação realizada de forma que a temperatura do sistema permaneça sempre constante.

Para gases ideais, implica que a quantidade de calor que o gás recebe seja exatamente igual ao trabalho por ele realizado.

Transformação isocórica ou Transformação isovolumétrica [Ref. 11][Ref. 12]: como o volume do sistema se mantém constante, não há realização de trabalho.

O calor trocado com o meio externo corresponde à variação da energia interna do sistema.

A curva hiperbólica que liga os pontos A e B representa uma transformação isotérmica em um gás perfeito.

Transformação isobárica [Ref. 11][Ref. 12]: Trata-se de uma transformação onde a pressão do sistema permanece sempre a mesma.

Parte do calor que o sistema troca com o meio externo está relacionado com o trabalho realizado e o restante com a variação da energia interna do sistema.

Transformação adiabática [Ref. 12]: há uma fronteira restritiva quanto ao calor entre sistema e vizinhança. Não há calor, e a única forma de se fazer a energia interna variar é mediante a realização de trabalho.

Numa expansão adiabática, o sistema realiza trabalho sobre o meio às expensas da energia interna deste.

Durante a compressão adiabática, o meio realiza trabalho sobre o sistema e a energia interna aumenta.

Transformação cíclica [Ref. 11][Ref. 12]

Denomina-se transformação cíclica ou ciclo de um sistema o conjunto de transformações sofridas pelo sistema de tal forma que seus estados final e inicial sejam iguais.

Como as variáveis de estado finais e iniciais são iguais, a energia interna do sistema não varia, bem como sua energia térmica - diretamente associada à temperatura. Há assim uma igualdade entre o calor e o trabalho trocados em cada ciclo.

Num diagrama p x V uma transformação cíclica é representada por uma curva fechada. A área interna do ciclo é numericamente igual ao trabalho total trocado com o meio exterior.

Quando o ciclo completo é percorrido no sentido horário, o sistema recebe calor e realiza trabalho (o trabalho W e o calor Q totais são ambos positivos); no sentido anti-horário o sistema cede calor e recebe trabalho (o trabalho W e o calor Q totais são ambos negativos),ou seja:

Wciclo>0 e Qciclo >0 em ciclo horário, implicando em uma máquina térmica.

Q<0ciclo ; Wciclo<0 em ciclo anti-horário, implicando em um refrigerador térmico (como as geladeiras)

Em uma transformação cíclica existe equivalência entre o calor Q trocado pelo gás e o trabalho realizado. Repare contudo que estes valores não são sempre iguais ao longo do ciclo, o que equivale a dizer que a energia interna pode variar e geralmente varia ao longo do ciclo. Contudo o saldo final por ciclo implica uma variação da energia interna nula, e um trabalho total por ciclo igual ao calor envolvido por ciclo.

Leis da Termodinâmica

A termodinâmica é baseada em leis estabelecidas experimentalmente:

  • A Lei Zero da Termodinâmica [Ref. 3][Ref. 12] determina que, quando dois sistemas em equilíbrio termodinâmico têm igualdade de temperatura com um terceiro sistema também em equilíbrio, eles têm igualdade de temperatura entre si. Esta lei é a base empírica para a medição de temperatura. Ela também estabelece o que vem a ser um sistema em equilíbrio termodinâmico: dado tempo suficiente, um sistema isolado atingirá um estado final - o estado de equilíbrio termodinâmico - onde nenhuma transformação macroscópica será doravante observada, caracterizando-se este por uma homogeneidade das grandezas termodinâmicas ao longo de todo o sistema (temperatura, pressão, volumes parciais ... constantes).
  • A Primeira Lei da Termodinâmica [Ref. 3][Ref. 12] fornece o aspecto quantitativo de processos de conversão de energia. É o princípio da conservação da energia e da conservação da massa, agora familiar, : "A energia do Universo, sistema mais vizinhança, é constante".
  • A Segunda Lei da Termodinâmica [Ref. 3][Ref. 12] determina de forma quantitativa a viabilidade de processos em sistemas físicos no que se refere à possibilidade de troca de energia e à ocorrência ou não destes processos na natureza. Afirma que há processos que ocorrem numa certa direção mas não podem ocorrer na direção oposta. Foi enunciada por Clausius da seguinte maneira: "A entropia do Universo, [sistema mais vizinhança], tende a um máximo": somente processos que levem a um aumento, ou quando muito à manutenção, da entropia total do sistema mais vizinhança são observados na natureza. Em sistemas isolados, transformações que impliquem uma diminuição em sua entropia jamais ocorrerão.
  • A Terceira Lei da Termodinâmica [Ref. 3][Ref. 12] estabelece um ponto de referência absoluto para a determinação da entropia, representado pelo estado derradeiro de ordem molecular máxima e mínima energia. Enunciada como "A entropia de uma substância cristalina pura na temperatura zero absoluto é zero".

Humor

Existem várias versões humorísticas destas leis. Uma delas, atribuída ao escritor e cientista inglês Charles Percy Snow [Ref. 13], é a seguinte:

  • Zero: Você tem que entrar no jogo
  • Um: Você não consegue ganhar
  • Dois: Você não consegue empatar
  • Três: Você não consegue parar de jogar

Notas

  1. A noção de partícula não precisa estar necessariamente associada à noção de átomo ou molécula apenas. Em certos casos, como no "gás de férmions", esta pode referir-se apenas aos elétrons (ou outro férmion qualquer). Em outros, pode representar íons,coacervados, e até mesmo estruturas "fundamentais" maiores...
  2. Embora geralmente não sejam abordados em cursos médios, encontram-se também sob domínio da termodinâmica os casos onde verifica-se não apenas transferência de energia como também de matéria entre os sistemas, sendo geralmente abordados em cursos superiores.
  3. Dado o mesmo sistema, ou seja, uma fronteira incólume, não há como variar-se apenas uma delas mantendo-se todas as outras inalteradas. A variação em uma implica variação em pelo mais uma das outras grandezas termodinâmicas associadas ao sistema.
  4. Duas boas referências para compreensão das principais ideias e princípios associados à termodinâmica são respectivamente em língua portuguesa e inglesa os livros "Termodinâmica, Teoria Cinética e Termodinâmica Estatística" e "Thermodynamics and an Introduction to Thermosthatics". Maiores detalhes, consulte a seção Referências.

Referências

  1. Oxford American Dictionary
  2. Clausius, Rudolf (1850). On the Motive Power of Heat, and on the Laws which can be deduced from it for the Theory of Heat. [S.l.]: Poggendorff's Annalen der Physick, LXXIX (Dover Reprint). ISBN 0-486-59065-8 
  3. a b c d e f g h i j k l m Termodinâmica, Teoria Cinética e Termodinâmica Estatística - Sears, Francis W.; Salinger, Gerhard L. - Terceira edição - Guanabara Dois - 1979 - Rio de Janeiro - RJ
  4. Partington, J.R. (1989). A Short History of Chemistry. [S.l.]: Dover. ISBN 0-486-65977-1 
  5. a b Perrot, Pierre (1998). A to Z of Thermodynamics. [S.l.]: Oxford University Press. ISBN 0-19-856552-6 
  6. Clark, John, O.E. (2004). The Essential Dictionary of Science. [S.l.]: Barnes & Noble Books. ISBN 0-7607-4616-8 
  7. Van Ness, H.C. (1969). Understanding Thermodynamics. [S.l.]: Dover Publications, Inc. ISBN 0-486-63277-6 
  8. Dugdale, J.S. (1998). Entropy and its Physical Meaning. [S.l.]: Taylor and Francis. ISBN 0-7484-0569-0 
  9. Smith, J.M.; Van Ness, H.C., Abbott, M.M. (2005). Introduction to Chemical Engineering Thermodynamics. [S.l.]: McGraw Hill. ISBN 0-07-310445-0 
  10. Haynie, Donald, T. (2001). Biological Thermodynamics. [S.l.]: Cambridge University Press. ISBN 0-521-79549-4 
  11. a b c d e f g h i Álvares, Beatriz Alvarenga; Luz, Antônio Máximo Ribeiro (2009). Física, Ensino Médio - Vol. 2. [S.l.]: Editora Scipione. ISBN 978-85-262-6508-0 
  12. a b c d e f g h i Callen, Hebert B. (1985). Thermodynamics and an Introduction to Thermosthatics. [S.l.]: John Wiley & Sons. ISBN 0-471-86256-8 
  13. Thermodynamics, no wikiquote (em inglês)


Ver também

Wikilivros
Wikilivros
O Wikilivros tem um livro chamado Curso de termodinâmica