Propagação de erros

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Ambox important.svg
Foram assinalados vários aspectos a serem melhorados nesta página ou secção:

Em Estatística, incerteza é uma quantidade(dimensional ou adimensional) que expressa a confiabilidade de um conjunto de dados, dando sua dispersão, bem como, não dependendo do valor verdadeiro. Erro é a diferença entre o valor de uma certa medida com seu valor verdadeiro (relacionando ambas conforme o tipo de erro). A propagação de incerteza ou propagação de erro (ambas diferem na forma de apresentar seus valores), é uma forma de verificar a confiabilidade dos dados de uma certa amostra/medida, quando esta é submetida a diferentes operações matemáticas. Ela define como as incertezas/erros das variáveis estão relacionadas e fornece a melhor estimativa para aquele conjunto de dados.

A entidade máxima para os padrões de medidas de incerteza é o BIPM

Motivação[editar | editar código-fonte]

Na realização de um experimento científico, ou qualquer outro experimento que haja coleta de dados, é raro o caso em que a análise do resultado dependa somente dos dados brutos encontrados. Os dados normalmente são coletados a fim de comparar os resultados com outros experimentos, ou para testar uma teoria, ou mesmo obter informações mais aprofundadas sobre determinado fenômeno. Nessas análises os dados são usados para se comparar pelo menos duas grandezas (considerando casos em que se pretende estudar algo), mas nem sempre é possível medir essas grandezas diretamente, sendo necessária a medida de outras grandezas que definam as que se quer comparar, ou tirando uma amostra de um conjunto de dados. Um exemplo disso é a velocidade. Não há como medir a velocidade propriamente dita, mas podemos medir distâncias e tempos, obtendo assim a velocidade média.

Como qualquer medida experimental, essa contém erros, que vêm da exatidão ou precisão do instrumento, ou até mesmo da flutuação estatística dos dados (dada pelo desvio padrão) – esta última é o caso de um decaimento radiativo. Quando se faz medições a fim de chegar indiretamente a outras grandezas, essas incertezas precisam ser levadas em conta, e há uma forma de se calcular a incerteza final da grandeza encontrada indiretamente.

Fórmulas de propagação de incertezas[editar | editar código-fonte]

Uma função f de uma ou mais variáveis envolvidas, as quais possuem uma incerteza associada, e nesta função são submetidas a operações matemáticas, existem diferentes formas de se determinar a propagação de incerteza e estas irão depender do tipo da função f a qual estamos lidando e do quanto deseja aproximá-la em nossos modelos.

Combinações lineares[editar | editar código-fonte]

Neste caso, analisa-se um modelo geral para uma função linear a qual pode possuir variáveis com ou sem correlação. Neste modelo, não são aplicadas aproximações. Vamos supor f_k(x_1,x_2,\dots,x_n) ser um grupo de m funções as quais são combinações lineares de n variáveis x_1,x_2,\dots,x_n com a combinação de coeficientes dada por A_{k1},A_{k2},\dots,A_{kn}, (k=1\dots m). Então:

f_k=\sum_i^n A_{ki} x_i ou \mathbf{f}=\mathbf{Ax}\,

e seja a matriz de variância-covariância em x denotada por : \Sigma^x\,.

\Sigma^x =
\begin{pmatrix}
   \sigma^2_1 & \text{cov}_{12} & \text{cov}_{13} & \cdots \\
   \text{cov}_{12} & \sigma^2_2 & \text{cov}_{23} & \cdots\\
   \text{cov}_{13} & \text{cov}_{23} & \sigma^2_3 & \cdots \\
\vdots & \vdots & \vdots & \ddots \\
\end{pmatrix}

Assim, a variância-covariância da matriz \Sigma^f\, de f é dada por

\Sigma^f_{ij}= \sum_k^n \sum_\ell^n A_{ik} \Sigma^x_{k\ell} A_{j\ell}.
.\Sigma^f=\mathbf{A} \Sigma^x \mathbf{A}^\top.

Esta é a expressão mais geral para a propagação de incerteza. Quando as incertezas entre as variáveis não são correlacionadas então a expressão se reduz à

\Sigma^f_{ij}= \sum_k^n  A_{ik} \left(\sigma^2_k \right)^x A_{jk}.

Em geral a expressão para uma simples função,f, são simplificadas para:

f=\sum_i^n a_i x_i: f=\mathbf {a x}\,
\sigma^2_f= \sum_i^n \sum_j^n a_i \Sigma^x_{ij} a_j= \mathbf{a \Sigma^x a^t}

Cada termo , M_{ij} pode ser expresso pela correlação dos coeficientes(Coeficiente de correlação de Pearson) \rho_{ij}\, porM_{ij}=\rho_{ij}\sigma_i\sigma_j\,, assim a expressão alternativa para a variância de f é:

\sigma^2_f= \sum_i^n a_i^2\sigma^2_i+\sum_i^n \sum_{j (j \ne i)}^n a_i a_j\rho_{ij} \sigma_i\sigma_j.

No caso em que as variáveis x não são correlacionadas:

\sigma^{2}_{f}= \sum_i^n a_{i}^{2}\sigma^{2}_{i}.

Combinações Não-Lineares[editar | editar código-fonte]

Aqui, os modelos descritos implicam em aproximações para gerar uma forma mais simplificada, sendo estas com uma precisão que vai depender de tais aproximações. Quando f é um grupo de combinações não-lineares da variável x, por exemplo quando f(a,b) = ab ,ela pode ser linearizada por uma aproximação de primeira ordem pela expansão da Série de Taylor .[1] Assim a expansão para uma função qualquer:


f_k \approx f^0_k+  \sum_i^n \frac{\partial f_k}{\partial {x_i}} x_i

aonde \partial f_k/\partial x_i denota a derivada parcial de fk com respeito a i-n variável. Ou na notação matricial

\mathrm{f} \approx \mathrm{f}^0 + J \mathrm{x}\,

aonde J é a matriz jacobiana. Desde que f0k seja uma constante, isso não contribuirá para o erro em f. Então, a propagação de incertezas segue o caso linear acima, mas substituindo os coeficientes lineares Aik e Ajk pelas derivadas parciais, \frac{\partial f_k}{\partial x_i} e \frac{\partial f_k}{\partial x_j}. Na notação matricial: [2]

\operatorname{cov}(\mathrm{f}) = J \operatorname{cov}(\mathrm{x}) J^\top.

Este é o Jacobiano da função e é usada para transformar linhas e colunas da covariância dos argumentos.

No entanto, a formula mais comum entre os engenheiros e cientistas experimentais, que calculam a propagação de incertezas para variáveis independentes. Segundo um padrão estipulado pelo Escritório Internacional de Pesos e Medidas (BIPM)

\sigma_f = \sqrt{ \left(\frac{\partial f}{\partial {x} }\right)^2\sigma^2_{x}+ \left(\frac{\partial f}{\partial {y} }\right)^2\sigma^2_{y}+ \left(\frac{\partial f}{\partial {z} }\right)^2 \sigma^2_{z} + ...}

aonde \sigma_f representa o desvio padrão da função f, \sigma_x representa o desvio padrão de x, \sigma_y representa o desvio padrão de y, e assim por diante.

É importante notar que esta formula é baseada nas características lineares dos gradient de f e então esta é uma boa estimative para o desvio padrão de f ao longo de s_x, s_y, s_z,... são pequenos comparados com as derivadas parciais.[3]

Exemplo[editar | editar código-fonte]

Qualquer função não linear, f(a,b), de duas variáveis, a and b, podem ser expandidas como

f\approx f^0+\frac{\partial f}{\partial a}a+\frac{\partial f}{\partial b}b

Então:

\sigma^2_f\approx\left| \frac{\partial f}{\partial a}\right| ^2\sigma^2_a+\left| \frac{\partial f}{\partial b}\right|^2\sigma^2_b+2\frac{\partial f}{\partial a}\frac{\partial f}{\partial b}\text{cov}_{ab}.

Para o particular caso que f=ab\!, \frac{\partial f}{\partial a}=b, \frac{\partial f}{\partial b}=a. Então

\sigma^2_f \approx b^2\sigma^2_a+a^2 \sigma_b^2+2ab\,\text{cov}_{ab}

ou

\left(\frac{\sigma_f}{f}\right)^2 \approx \left(\frac{\sigma_a}{a}\right)^2+\left(\frac{\sigma_b}{b}\right)^2+2\left(\frac{\sigma_a}{a}\right)\left(\frac{\sigma_b}{b}\right)\rho_{ab}.

Avisos e Ressalvas[editar | editar código-fonte]

Estimativas de erro para funções não-lineares são baseadas em uma aproximação que depende do truncamento
da série de Taylor, a extensão desta depende da natureza da função. Por exemplo, a propensão do erro calculado 
para log x aumenta enquanto x aumenta, e esta é uma boa aproximação para 1+x desde que  x seja pequeno. 

No caso especial do inverso de 1/B aonde B=N(0,1), a distribuição é uma distribuição de Cauchy e não há uma variância definida. Para tanto a taxa de distribuição, pode ser definida pelas probabilidades dos intervalos os quais são definidos pela simulação de Monte Carlo, ou, em alguns casos, usando a transformação de Geary-Hinkley .[4]

Para funções “muito não-lineares’’, existem cinco categorias de aproximações probabilísticas as quais se aplica a propagação de incertezas .[5]

Exemplo de fórmulas[editar | editar código-fonte]

Esta tabela mostra as variâncias de funções simples para variáveis reais  A,B\!, com seus desvios padrões \sigma_A, \sigma_B\,, coeficiente de correlação \rho_{AB}\, e constantes reais a,b\,.

Função Variância
f = aA\, \sigma_f^2 = a^2\sigma_A^2
f = a A \pm bB\, \sigma_f^2 = a^2\sigma_A^2 + b^2\sigma_B^2\pm2ab\,\text{cov}_{AB}
f = AB\, \left(\frac{\sigma_f}{f}\right)^2 \approx \left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2 + 2\frac{\sigma_A\sigma_B}{AB}\rho_{AB}
f = \frac{A}{B}\, \left(\frac{\sigma_f}{f}\right)^2 \approx \left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2 - 2\frac{\sigma_A\sigma_B}{AB}\rho_{AB}[6]
f = a A^{\pm b}\, \frac{\sigma_f}{f} \approx b \frac{\sigma_A}{A} [7]
f = a \ln(\pm bA)\, \sigma_f \approx a \frac{\sigma_A}{A} [8]
f = a \log(A)\, \sigma_f \approx a \frac{\sigma_A}{A \ln(10)} [8]
f = a e^{\pm bA}\, \frac{\sigma_f}{f} \approx b\sigma_A [9]
f = a^{\pm bA}\, \frac{\sigma_f}{f} \approx b\ln(a)\sigma_A

Para variáveis não correlacionadas a covariância dos termos é zero. Expressões mais complicadas podem ser obtidas a parir de tais simples funções. Por exemplo, repetindo a multiplicação e assumindo que não há correlação entre os dados

f = AB(C); \left(\frac{\sigma_f}{f}\right)^2 \approx \left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2+ \left(\frac{\sigma_C}{C}\right)^2.

Para o caso f = AB obtemos a expressão de Goodman para calcular sua exata variância a calculate V(XY)= E(X)^2 V(Y) + E(Y)^2 V(X) + E((X-E(X))^2 (Y-E(Y))^2)^2 E então nós teríamos \sigma_f^2 = A^2\sigma_B^2 + B^2\sigma_A^2 +  \sigma_A^2\sigma_B^2

Derivadas parciais[editar | editar código-fonte]

Dado X=f(A, B, C, \dots)

Erro Absoluto Variância
\left |\Delta X\right |=\left |\frac{\partial f}{\partial A}\right |\cdot \left |\Delta A\right |+\left |\frac{\partial f}{\partial B}\right |\cdot \left |\Delta B\right |+\left |\frac{\partial f}{\partial C}\right |\cdot \left |\Delta C\right |+\cdots \sigma_X^2=\left (\frac{\partial f}{\partial A}\sigma_A\right )^2+\left (\frac{\partial f}{\partial B}\sigma_B\right )^2+\left (\frac{\partial f}{\partial C}\sigma_C\right )^2+\cdots[10]

Inverso da função tangente[editar | editar código-fonte]

Nós podemos calcular a propagação de incertezas para o inverso da função tangente como um exemplo do uso das derivadas parcias para propagar a incerteza. Definindo

f(x) = \arctan(x),

aonde \sigma_x é a incerteza absoluta nas nossas medidas de x. Assim, a derivada parcial de f(x) com respeito a x é

\frac{\partial f}{\partial x} = \frac{1}{1+x^2}.

Então, nossa propagação de incertezas fica

\sigma_{f} \approx \frac{\sigma_x}{1+x^2},

aonde \sigma_f é incerteza absoluta propagada.



Valor médio de múltiplos e independentes dados[editar | editar código-fonte]

Suponhamos que gravamos N diferentes dados, onde cada um deles é representado por x_1,x_2,\dots,x_n, onde a soma dos dados é dado por \Sigma

\Sigma=x_1,x_2,\dots,x_n

E a média destes dados é dada por

\bar{x}= \frac{\Sigma}{N}

Neste caso, como se trata de um conjunto de dados independentes, aplicando a fórmula de propagação de incertezas

\sigma^2_{\bar{x}}=\frac{\bar{x}}{N}


Combinação de medidas independentes com valores de incertezas diferentes[editar | editar código-fonte]

Neste caso, queremos relacionar como N diferentes incertezas de uma mesma quantidade se relacionam. Para isso é atribuído um fator de peso para cada incerteza onde a função resultante é minimizada. Busca-se o "melhor valor". Por fim, temos:

 \frac{1}{\sigma^2_{<x>}}=\sum^{\N}_{i=1} \frac{1}{\sigma^2_{xi}}

Exemplos com Aplicações[editar | editar código-fonte]

Combinação linear - Soma de contagens em medidas de fontes radiativas[editar | editar código-fonte]

Para uma fonte radiativa o número de contagens da mesma foi 1071 enquanto que foi medido um fundo de 521, qual é o número de contagens pertencente apenas a fonte? Este é um exemplo de combinação linear. Para uma fonte radiativa, sabe-se que seu desvio padrão é \sqrt{N}.

Como a= x-y

a é o número de contagens da fonte
x é o número total de contagens
yé o numero de contagens do fundo

Então:

a=550
\sigma^2_a= \sigma^2_x+\sigma^2_y
\sigma^2_a=1071+521
\sigma_a= 39,9

Logo, o numero de contagens que pertence apenas a fonte é 550\pm 39,9

Combinações Não-Lineares - Trigonometria[editar | editar código-fonte]

A área de um triângulo é igual a metade do produto da base vezes a altura

A=\frac{bh}{2}

Se a base e a altura tem valores de b=5 cm e h=10 cm, e a incerteza dada por \sigma_b = 1 mm e \sigma_h = 3 mm , a área é A=25 cm^2 e a incerteza da área é dada por:

\sigma^2_a \approx \frac{\sigma^2_b}{25}+\frac{\sigma^2_h}{100} = 81,25 mm^2
\sigma_a \approx 9 mm

Combinação de medidas independentes com valores de incerteza diferentes - Medida com diferentes equipamentos[editar | editar código-fonte]

Foi medido o comprimento de uma mesa utilizando dois equipamentos de medidas diferentes, onde para um a medida da mesa foi de  l=80 cm\pm 1 cm enquanto que para o outro a medida foi  l=81 cm\pm 3 cm. Qual é melhor estimativa para o valor do comprimento da régua?

Com relação à média:

Média:= 80,5 cm

Com relação ao desvio

 \frac{1}{\sigma^2_{<x>}}=\sum^{\N}_{i=1} \frac{1}{\sigma^2_{xi}}
\sigma_{<x>}=9,49

Logo o melhor valor para o comprimento da régua estimado pelos 2 equipamentos é 80,5 cm \pm 9,49 cm

Medidas da resistência[editar | editar código-fonte]

Uma aplicação experimental é o caso no qual medidas da corrente elétrica ,I, e tensão elétrica V, em um resistor com objetivo de determinar a resistência R, usando a lei de Ohm, R = V / I.

Dada a medida das variáveis com incerteza 'I±σI e V±σV, a incerteza associada a medida da resistência, σR é

\sigma_R \approx \sqrt{ \sigma_V^2 \left(\frac{1}{I}\right)^2 + \sigma_I^2 \left(\frac{-V}{I^2}\right)^2 }.

Notas[editar | editar código-fonte]

  1. Goodman, Leo (1960). "On the Exact Variance of Products". Journal of the American Statistical Association 55 (292): 708–713. DOI:10.2307/2281592.
  2. Ochoa1,Benjamin; Belongie, Serge "Covariance Propagation for Guided Matching"
  3. Clifford, A. A.. Multivariate error analysis: a handbook of error propagation and calculation in many-parameter systems. [S.l.]: John Wiley & Sons, 1973. ISBN 0470160551[falta página]
  4. (July 1975) "A Note on the Ratio of Two Normally Distributed Variables". Management Science 21 (11): 1338–1341. DOI:10.1287/mnsc.21.11.1338.
  5. S. H. Lee and W. Chen, A comparative study of uncertainty propagation methods for black-box-type problems, Structural and Multidisciplinary Optimization Volume 37, Number 3 (2009), 239-253, DOI: 10.1007/s00158-008-0234-7
  6. Strategies for Variance Estimation. Página visitada em 2013-01-18.
  7. Fornasini, Paolo (2008), The uncertainty in physical measurements: an introduction to data analysis in the physics laboratory, Springer, p. 161, ISBN 0-387-78649-X, http://books.google.com/books?id=PBJgvPgf2NkC&pg=PA161 
  8. a b Harris, Daniel C. (2003), Quantitative chemical analysis (6th ed.), Macmillan, p. 56, ISBN 0-7167-4464-3, http://books.google.com/books?id=csTsQr-v0d0C&pg=PA56 
  9. Error Propagation tutorial Foothill College. (October 9, 2009). Página visitada em 2012-03-01.
  10. Lindberg, Vern (2009-10-05). Uncertainties and Error Propagation (em eng) Uncertainties, Graphing, and the Vernier Caliper. 1 pp. Rochester Institute of Technology. Página visitada em 2007-04-20. Cópia arquivada em 2004-11-12. "The guiding principle in all cases is to consider the most pessimistic situation."

Bibliografia[editar | editar código-fonte]

  • Bevington, Philip R.; Robinson, D. Keith (2002), Data Reduction and Error Analysis for the Physical Sciences (3rd ed.), McGraw-Hill, ISBN 0-07-119926-8 
  • Meyer, Stuart L. (1975), Data Analysis for Scientists and Engineers, Wiley, ISBN 0-471-59995-6 
  • W. Feller, An Introduction to probability Theory an its Aplications, 2nd ed.,Eiley,New York,1957.
  • Knoll,Glenn F., Radiation Detection and Measurement,3nd
  • Wallace, M.J,Experimental Measurements:Precision,Error and Truth,1nd,wesley,London,1967

Ligações externas[editar | editar código-fonte]