Tensor de curvatura

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

Em geometria diferencial, tensor de curvatura é uma das noções métricas mais importantes. Um tensor de curvatura é uma generalização da Curvatura de Gauss em dimensões mais altas (dois exemplos disto são o tensor de Riemann que se desenvolve neste artigo e o tensor de Ricci).

A geometria infinitesimal das variedades de Riemann com dimensão ≥ 3 é demasiado complicada para ser descrita totalmente por um número em um ponto dado (tal como sucede quando a dimensão é menor ou igual a 2). Assim em 2 dimensões a curvatura pode ser representada por um número escalar [ou tensor de ordem zero], em 3 dimensões a curvatura pode ser representada por um tensor de segundo (como por exemplo o tensor de Ricci). Entretanto para dimensões totalmente gerais se necessita ao menos um tensor de quarta ordem (como o tensor de Riemann). Foi Riemann quem introduziu uma maneira de descrever completamente a curvatura em qualquer número de dimensões mediante um "pequeno monstro" de tensor, chamado tensor de Riemann.


Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.