Eletromagnetismo: diferenças entre revisões

Origem: Wikipédia, a enciclopédia livre.
Conteúdo apagado Conteúdo adicionado
m traduzindo
Linha 13: Linha 13:
==A força eletromagnética==
==A força eletromagnética==


A força que um campo eletromagnético exerce sobre [[carga elétrica|cargas elétricas]], chamada força eletromagnética, é uma das quatro forças fundamentais. As outras são: a [[força nuclear forte]] (que mantém o núcleo [[átomo|atômico]] coeso), a [[força nuclear fraca]] (que causa certas formas de decaimento radioativo), e a [[força gravitacional]]. Quaisquer outras forças provêm necessariamente dessas quatro forças fundamentais.
A força que um campo eletromagnético exerce sobre [[carga elétrica|cargas elétricas]], chamada João lourenço, é uma das quatro forças fundamentais. As outras são: a [[força nuclear forte]] (que mantém o núcleo [[átomo|atômico]] coeso), a [[força nuclear fraca]] (que causa certas formas de decaimento radioativo), e a [[força gravitacional]]. Quaisquer outras forças provêm necessariamente dessas quatro forças fundamentais.


A força eletromagnética tem a ver com praticamente todos os fenômenos físicos que se encontram no cotidiano, com exceção da [[gravidade]]. Isso porque as interações entre os [[átomo]]s são regidas pelo eletromagnetismo, já que são compostos por [[próton]]s, [[elétron]]s, ou seja, por cargas elétricas. Do mesmo modo as forças eletromagnéticas interferem nas relações intermoleculares, ou seja, entre nós e quaisquer outros objetos. Assim podem-se incluir fenômenos químicos e biológicos como conseqüência do eletromagnetismo.
A força eletromagnética tem a ver com praticamente todos os fenômenos físicos que se encontram no cotidiano, com exceção da [[gravidade]]. Isso porque as interações entre os [[átomo]]s são regidas pelo eletromagnetismo, já que são compostos por [[próton]]s, [[elétron]]s, ou seja, por cargas elétricas. Do mesmo modo as forças eletromagnéticas interferem nas relações intermoleculares, ou seja, entre nós e quaisquer outros objetos. Assim podem-se incluir fenômenos químicos e biológicos como conseqüência do eletromagnetismo.

Revisão das 14h47min de 7 de outubro de 2009

Predefinição:Portal-física

No estudo da Física, o electromagnetismo ou eletromagnetismo é o nome da teoria unificada desenvolvida por James Maxwell para explicar a relação entre a eletricidade e o magnetismo. Esta teoria baseia-se no conceito de campo electromagnético.

O campo magnético é resultado do movimento de cargas elétricas, ou seja, é resultado de corrente elétrica. O campo magnético pode resultar em uma força eletromagnética quando associada a ímãs.

A variação do fluxo magnético resulta em um campo elétrico (fenômeno conhecido por indução eletromagnética, mecanismo utilizado em geradores elétricos, motores e transformadores de tensão). Semelhantemente, a variação de um campo elétrico gera um campo magnético. Devido a essa interdependência entre campo elétrico e campo magnético, faz sentido falar em uma única entidade chamada campo electromagnético.

Esta unificação foi terminada por James Clerk Maxwell, e escrita em fórmulas por Oliver Heaviside, no que foi uma das grandes descobertas da Física no século XIX. Essa descoberta posteriormente levou a um melhor entendimento da natureza da luz, ou seja, pôde-se entender que a luz é uma propagação de uma perturbação eletromagnética, ou melhor dizendo, a luz é uma onda eletromagnética. As diferentes freqüências de oscilação estão associadas a diferentes tipos de radiação. Por exemplo, ondas de rádio tem freqüências menores, a luz visível tem frequências intermediárias e a radiação gama tem as maiores freqüências.

A teoria do eletromagnetismo foi o que permitiu o desenvolvimento da teoria da relatividade especial por Albert Einstein em 1905.

A força eletromagnética

A força que um campo eletromagnético exerce sobre cargas elétricas, chamada João lourenço, é uma das quatro forças fundamentais. As outras são: a força nuclear forte (que mantém o núcleo atômico coeso), a força nuclear fraca (que causa certas formas de decaimento radioativo), e a força gravitacional. Quaisquer outras forças provêm necessariamente dessas quatro forças fundamentais.

A força eletromagnética tem a ver com praticamente todos os fenômenos físicos que se encontram no cotidiano, com exceção da gravidade. Isso porque as interações entre os átomos são regidas pelo eletromagnetismo, já que são compostos por prótons, elétrons, ou seja, por cargas elétricas. Do mesmo modo as forças eletromagnéticas interferem nas relações intermoleculares, ou seja, entre nós e quaisquer outros objetos. Assim podem-se incluir fenômenos químicos e biológicos como conseqüência do eletromagnetismo.

Cabe ressaltar que, conforme à eletrodinâmica quântica, a força eletromagnética é resultado da interação de cargas elétricas com fótons.

O eletromagnetismo clássico

O cientista William Gilbert propôs que a eletricidade e o magnetismo, apesar de ambos causarem efeitos de atração e repulsão, seriam efeitos distintos. Entretanto marinheiros percebiam que raios causavam perturbações nas agulhas das bússolas, mas a ligação entre os raios e a eletricidade ainda não estava traçada até os experimentos que Benjamin Franklin propôs em 1752. Um dos primeiros a descobrir e publicar as relações entre corrente elétrica e o magnetismo foi Romagnosi, que em 1802 afirmou que um fio conectado a uma pilha provocava um desvio na agulha de uma bússola que estivesse próxima. No entanto essa notícia não recebeu o crédito que lhe era devido até que, em 1820, Hans Christian Ørsted montou um experimento similar.

A teoria do eletromagnetismo foi desenvolvida por vários físicos durante o século XIX, culminando finalmente no trabalho de James Clerk Maxwell, o qual unificou as pesquisas anteriores em uma única teoria e descobriu a natureza eletromagnética da luz. No eletromagnetismo clássico, o campo eletromagnético obedece a uma série de equações conhecidas como equações de Maxwell, e a força eletromagnética pela lei de Lorentz.

Uma das características do eletromagnetismo clássico é a dificuldade em associar com a mecânica clássica, compatível porém com a relatividade especial. Conforme as equações de Maxwell, a velocidade da luz é uma constante, depende apenas da permissividade elétrica e permeabilidade magnética do vácuo. Isso porém viola a invariância de Galileu, a qual já era há muito tempo base da mecânica clássica. Um caminho para reconciliar as duas teorias era assumir a existência de éter luminífero através do qual a luz propagaria. No entanto, os experimentos seguintes falharam em detectar a presença do éter. Em 1905, Albert Einstein resolveu o problema com a teoria da relatividade especial, a qual abandonava as antigas leis da cinemática para seguir as transformações de Lorentz as quais eram compatíveis com o eletromagnetismo clássico.

A teoria da relatividade mostrou também que adotando-se um referencial em movimento em relação a um campo magnético, tem-se então um campo elétrico gerado. Assim como também o contrário era válido, então de fato foi confirmado a relação entre eletricidade e magnetismo. Portanto o termo "eletromagnetismo" estava consolidado.

O efeito fotoelétrico

Em outra publicação sua no mesmo ano, Einstein pôs em dúvida vários princípios do eletromagnetismo clássico. Sua teoria do efeito fotoelétrico (pelo qual ganhou o Prêmio Nobel em Física) afirmava que a luz tinha em certo momento um comportamento corpuscular, isso porque a luz demonstrava carregar corpos com quantidades discretas de energia, esses corpos posteriormente passaram a ser chamados de fótons. Através de sua pesquisa, Max Planck mostrou que qualquer objeto emite radiação eletromagnética discretamente em pacotes, idéia que leva a teoria de Radiação de Corpo Negro. Todos esses resultados estavam em contradição com a teoria clássica da luz como uma mera onda contínua. As teorias de Planck e Einstein foram as causadoras da teoria da mecânica quântica, a qual, quando formulada em 1925, necessitava ainda de uma teoria quântica para o Eletromagnetismo.

Essa teoria só veio a aparecer em 1940, conhecida hoje como eletrodinâmica quântica; essa é uma das teorias mais precisas da Física nos dias de hoje.

Unidades

Sistema Internacional de Unidades para Eletromagnetismo
Símbolo Nome da grandeza Nome da unidade Unidade Unidades base
Corrente elétrica ampère A A = W/V = C/s
Carga elétrica coulomb C A·s
Diferença de potencial ou Potencial elétrico volt V J/C = kg·m2·s−3·A−1
, , Resistência elétrica, Impedância, Reatância ohm Ω V/A = kg·m2·s−3·A−2
Resistividade ohm metro Ω·m kg·m3·s−3·A−2
Potência elétrica watt W V·A = J/s = kg·m2·s−3
Capacitância farad F C/V = kg−1·m−2·A2·s4
lambda carga linear ou comprimento de onda
Permissividade farad por metro F/m kg−1·m−3·A2·s4
Susceptibilidade elétrica Adimensional - -
, , Condutância, Admitância, Susceptância siemens S Ω−1 = kg−1·m−2·s3·A2
Condutividade siemens por metro S/m kg−1·m−3·s3·A2
Campo magnético,densidade de fluxo magnético, Indução magnética tesla T Wb/m2 = kg·s−2·A−1 = N·A−1·m−1
Fluxo magnético weber Wb V·s = kg·m2·s−2·A−1
Fluxo elétrico coulomb C
Intensidade magnética ampère por metro A/m A·m−1
Relutância ampère por weber A/Wb kg−1·m−2·s2·A2
Indutância henry H Wb/A = V·s/A = kg·m2·s−2·A−2
Permeabilidade henry por metro H/m kg·m·s−2·A−2
Susceptibilidade magnética Adimensional
Susceptibilidade magnética Adimensional
função de transferência
coeficiente de temperatura
força e contra força elemotriz
Fase Inicial
velocidade angular ou frequência angular
Outras Unidades para o Eletromagnetismo
Símbolo Unidade Descrição
ohm (unidade SI de resistência)
Fasor
rigidez dielétrica
Elétron eletrão-volt (unidade de energia)
Farad (unidade SI de capacidade)
Frequência
Gauss (unidade de campo magnético) ou prefixo giga ()
constante de Planck
constante dielétrica
indutância mútua
momento magnético
função resposta de frequência
carga elementar
Constantes de Tempo
energia potencial eletrostática
energia potencial gravítica
período de uma onda harmónica ou temperatura
Impedância
constante magnética
aumento de uma grandeza física
campo elétrico
valor máximo da função sinusoidal
pontos no espaço, curvas, superfícies e sólidos
constante de Coulomb
torque
Hertz hertz (unidade SI de frequência)
valor médio da função
transformada de Laplace da função
derivadas da função de uma variável
carga volúmica ou resistividade

Ver também

Ligações externas

Wikilivros
Wikilivros
O Wikilivros tem um livro chamado Eletromagnetismo




Predefinição:Link FA