Máxima verossimilhança

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book.svg
Esta página ou secção não cita nenhuma fonte ou referência, o que compromete sua credibilidade (desde julho de 2014).
Por favor, melhore este artigo providenciando fontes fiáveis e independentes, inserindo-as no corpo do texto por meio de notas de rodapé. Encontre fontes: Googlenotícias, livros, acadêmicoYahoo!Bing. Veja como referenciar e citar as fontes.

Em estatística, a estimativa por máxima verossimilhança (maximum-likelihood estimation- MLE) é um método para estimar os parâmetros de um modelo estatístico. Assim, a partir de um conjunto de dados e dado um modelo estatístico, a estimativa por máxima verossimilhança estima valores para os diferentes parâmetros do modelo.

Por exemplo, alguém pode estar interessado na altura de girafas fêmeas adultas, mas devido à restrições de custo ou tempo, medir a altura de todas essas girafas de uma população pode ser impossível. Podemos assumir que as alturas são normalmente distribuídas (modelo estatístico), mas desconhecemos a média e variância (parâmetros do modelo) dessa distribuição. Esses parâmetros da distribuição podem então ser estimados por MLE a partir da medição de uma amostra da população. O método busca aqueles valores para os parâmetros de maneira a maximizar a probabilidade dos dados amostrados, dados o modelo assumido (no caso, distribuição normal).

De maneira geral, posto um conjunto de dados e um modelo estatístico, o método de máxima verossimilhança estima os valores dos diferentes parâmetros do modelo estatístico de maneira a maximizar a probabilidade dos dados observados (isto é, busca parâmetros que maximizem a função de verossimilhança). O método de máxima verossimilhança apresenta-se como um método geral para estimação de parâmetros, principalmente no caso de distribuições normais. Entretanto, vale notar que em alguns casos a estimativa por máxima verossimilhança pode ser inadequada.