Modelo Galves-Löcherbach

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegação Saltar para a pesquisa
Vizualização 3D do modelo de Galves-Löcherbach simulando os disparos de 4000 neurônios (4 camadas com uma população de neurônios inibitórios e uma população de neurônios excitatórios cada) em 180 intervalos de tempo.

O Modelo Galves-Löcherbach é um modelo com estocasticidade intrínseca para redes de neurônios, no qual a probabilidade de disparos futuros é dependente da evolução total do sistema desde o último disparo.[1] Esse modelo de redes neurais foi desenvolvido pelos matemáticos Antonio Galves e Eva Löcherbach. No artigo original, de 2013, os autores chamaram o modelo de "sistema de cadeias estocásticas com memória de alcance variável interagindo entre si".


História[editar | editar código-fonte]

Algumas inspirações do modelo são o sistema de partículas em interação de Frank Spitzer e a noção de cadeias estocásticas com memória de alcance variável de Jorma Rissanen. Outro trabalho que o influenciou inclui o estudo de Bruno Cessac com o modelo integra-e-dispara com vazamento, que por sua vez teve influência de Hédi Soula.[2] Os próprios autores chamaram o processo apresentado por Cessac de "uma versão em dimensão finita" do modelo probabilístico.

Modelos anteriores de integra-e-dispara com características estocásticas necessitavam a inserção de um ruído para simular a estocasticidade.[3] Esse modelo se destaca por ser inerentemente estocástisco, incorporando questões probabilísticas diretamente no cálculo dos disparos. Ele também é um modelo de implementação relativamente simples, do ponto de vista computacional, com uma boa relação entre custo e eficiência. É também um modelo não-markoviano, pois a probabilidade da ocorrência de um disparo de um neurônio dado depende da atividade acumulada do sistema desde o último disparo.

Desenvolvimentos do modelo foram realizados, contemplando a noção de limites hidrodinâmicos do sistema de neurônios em interação,[4]o comportamento de longo prazo e aspectos referentes à estabilidade do processo no sentido de prever e classificar diferentes comportamentos como uma função dos parâmetros,[5][6] e a generalização do modelo para tempo contínuo.[7]

O modelo Galves-Löcherbach foi a pesquisa angular no desenvolvimento do Centro de Pesquisa, Inovação e Difusão em Neuromatemática.[8]

Definição formal[editar | editar código-fonte]

O modelo supõe um conjunto enumerável de neurônios , e modela sua evolução em instantes de tempo discretos por meio de uma cadeia estocástica assumindo valores no espaço de estados . Mais precisamente, para cada neurônio e instante de tempo , definimos se o neurônio dispar no instante de , e em caso contrário. A configuração do conjunto de neurônios, no instante de tempo , é então definida por . Para cada instante de tempo , definimos a sigma-álgebra , representando o histórico da evolução da atividade deste conjunto de neurônios até o instante de tempo em questão . A dinâmica da atividade deste conjunto de neurônios é definida do seguinte modo. Fixado o histórico , os neurônios disparam ou não no instante de tempo seguinte independentemente uns dos outros, isto é, para cada subconjunto finito e qualquer configuração tem-se que

Além disso, a probabilidade de um dado neurônio disparar em um dado tempo , de acordo com o modelo probabilístico, é dada pela fórmula

sendo um peso sináptico que representa o aumento do potencial de ação do neurônio devido ao disparo do neurônio , é uma função que modela o vazamento de potencial e o momento de disparo mais recente do neurônio antes do tempo em questão , de acordo com a fórmula

No instante anterior a , o neurônio dispara, restaurando o potencial de ação ao valor inicial.

Ver também[editar | editar código-fonte]

Referências

  1. A. Galves, E. Löcherbach, "Infinite Systems of Interacting Chains with Memory of Variable Length — A Stochastic Model for Biological Neural Nets". Journal of Statistical Physics, vol. 151, n. 5, pp. 896-921, junho de 2013
  2. B. Cessac, "A discrete time neural network model with spiking neurons: II: Dynamics with noise". Journal of Mathematical Biology, Vol. 62, nº 6, pg 863-900. Junho 2011
  3. H. E. Plesser, W. Gerstner. "Noise in Integrate-and-Fire Neurons: From Stochastic Input to Escape Rates". Neural Computation. Feb 2000, Vol. 12, No. 2, Pg 367-384
  4. A. De Masi, A. Galves, E. Löcherbach, E. Presutti, "Hydrodynamic limit for interacting neurons". Journal of Statistical Physics, 158(4), 866-902, 2015.
  5. A. Duarte, G. Ost, "A model for neural activity in the absence of external stimuli", arXiv preprint arXiv:1410.6086 (2014).
  6. N. Fournier, E. Löcherbach, "On a toy model of interacting neurons", arXiv preprint arXiv:1410.3263 (2014).
  7. K. Yaginuma, "A stochastic system with infinite interacting components to model the time evolution of the membrane potentials of a population of neurons", arXiv preprint arXiv:1505.00045 (2015).
  8. "Modelos matemáticos do cérebro", Fernanda Teixeira Ribeiro, Mente e Cérebro, junho de 2014