Usuário(a):RBiazzi/Modelo de Galves-Löcherbach

Origem: Wikipédia, a enciclopédia livre.
Vizualização 3D do modelo de Galves-Löcherbach simulando os disparos de 4000 neurônios (4 camadas com uma população de neurônios inibitórios e uma população de neurônios excitatórios cada) em 180 intervalos de tempo.

O Modelo Galves-Löcherbach é um modelo com estocasticidade intrínseca para redes de neurônios, no qual a probabilidade de disparos futuros é dependente da evolução total do sistema desde o último disparo.[1] Esse modelo de redes neurais foi desenvolvido pelos matemáticos Antonio Galves e Eva Löcherbach. No artigo original, de 2013, os autores chamaram o modelo de "sistema de cadeias estocásticas com memória de alcance variável interagindo entre si".


História[editar | editar código-fonte]

Algumas inspirações do modelo são o sistema de partículas em interação de Frank Spitzer e a noção de cadeias estocásticas com memória de alcance variável de Jorma Rissanen. Outro trabalho que o influenciou inclui o estudo de Bruno Cessac com o modelo integra-e-dispara com vazamento, que por sua vez teve influência de Hédi Soula.[2] Os próprios autores chamaram o processo apresentado por Cessac de "uma versão em dimensão finita" do modelo probabilístico.

Modelos anteriores de integra-e-dispara com características estocásticas necessitavam a inserção de um ruído para simular a estocasticidade.[3] Esse modelo se destaca por ser inerentemente estocástisco, incorporando questões probabilísticas diretamente no cálculo dos disparos. Ele também é um modelo de implementação relativamente simples, do ponto de vista computacional, com uma boa relação entre custo e eficiência. É também um modelo não-markoviano, pois a probabilidade da ocorrência de um disparo de um neurônio dado depende da atividade acumulada do sistema desde o último disparo.

Desenvolvimentos do modelo foram realizados, contemplando a noção de limites hidrodinâmicos do sistema de neurônios em interação,[4] o comportamento de longo prazo e aspectos referentes à estabilidade do processo no sentido de prever e classificar diferentes comportamentos como uma função dos parâmetros,[5][6] e a generalização do modelo para tempo contínuo.[7]

O modelo Galves-Löcherbach foi a pesquisa angular no desenvolvimento do Centro de Pesquisa, Inovação e Difusão em Neuromatemática.[8]

Definição formal[editar | editar código-fonte]

O modelo supõe um conjunto enumerável de neurônios , e modela sua evolução em instantes de tempo discretos por meio de uma cadeia estocástica assumindo valores no espaço de estados . Mais precisamente, para cada neurônio e instante de tempo , definimos se o neurônio dispar no instante de , e em caso contrário. A configuração do conjunto de neurônios, no instante de tempo , é então definida por . Para cada instante de tempo , definimos a sigma-álgebra , representando o histórico da evolução da atividade deste conjunto de neurônios até o instante de tempo em questão . A dinâmica da atividade deste conjunto de neurônios é definida do seguinte modo. Fixado o histórico , os neurônios disparam ou não no instante de tempo seguinte independentemente uns dos outros, isto é, para cada subconjunto finito e qualquer configuração tem-se que

.

Além disso, a probabilidade de um dado neurônio disparar em um dado tempo , de acordo com o modelo probabilístico, é dada pela fórmula

,

sendo um peso sináptico que representa o aumento do potencial de ação do neurônio devido ao disparo do neurônio , é uma função que modela o vazamento de potencial e o momento de disparo mais recente do neurônio antes do tempo em questão , de acordo com a fórmula

.

No instante anterior a , o neurônio dispara, restaurando o potencial de ação ao valor inicial.

Ver também[editar | editar código-fonte]

Referências

  1. Galves, A.; Löcherbach, E. (junho de 2013). «Infinite Systems of Interacting Chains with Memory of Variable Length — A Stochastic Model for Biological Neural Nets». Journal of Statistical Physics. 151 (5): 896-921. doi:10.1007/s10955-013-0733-9 
  2. Cessac, B. (junho de 2011). «A discrete time neural network model with spiking neurons: II: Dynamics with noise». Journal of Mathematical Biology. 62 (6): 863-900. PMID 20658138. doi:10.1007/s00285-010-0358-4 
  3. E. Plesser, H.; Gerstner, W. (fevereiro de 2000). «Noise in integrate-and-fire neurons: from stochastic input to escape rates». Neural Computation. 12 (2): 367-384. PMID 10636947. doi:10.1162/089976600300015835 
  4. De Masi, A.; Galves, A.; Löcherbach, E.; Presutti, E. (2015). «Hydrodynamic limit for interacting neurons». Journal of Statistical Physics. 158 (4): 866-902. doi:10.1007/s10955-014-1145-1 
  5. Duarte, A.; Ost, G. (2016). «A model for neural activity in the absence of external stimuli». Markov Processes And Related Fields. 22 (1): 37-52. doi:10.48550/arXiv.1410.6086 
  6. Fournier, N.; Löcherbach, E. (novembro de 2016). «On a toy model of interacting neurons». Ann. Inst. H. Poincaré Probab. Statist. 52 (4): 1844-1876. doi:10.1214/15-AIHP701 
  7. Yaginuma, K. (8 de março de 2016). «A stochastic system with infinite interacting components to model the time evolution of the membrane potentials of a population of neurons». Journal of Statistical Physics. 163: 642-658. doi:10.1007/s10955-016-1490-3 
  8. Teixeira Ribeiro, Fernanda (junho de 2014). «Modelos matemáticos do cérebro» (PDF). Mente e Cérebro. Consultado em 14 de junho de 2023 

[[Categoria:Neurociência]] [[Categoria:Biofísica]]