Sequência de Fibonacci

Origem: Wikipédia, a enciclopédia livre.
(Redirecionado de Número de Fibonacci)
Ir para: navegação, pesquisa
NoFonti.svg
Este artigo ou secção cita uma ou mais fontes fiáveis e independentes, mas ela(s) não cobre(m) todo o texto (desde março de 2011).
Por favor, melhore este artigo providenciando mais fontes fiáveis e independentes e inserindo-as em notas de rodapé ou no corpo do texto, conforme o livro de estilo.
Encontre fontes: Googlenotícias, livros, acadêmicoScirusBing. Veja como referenciar e citar as fontes.
Yupana (em quíchua, "instrumento de contagem"): calculadora usada pelos incas, possivelmente baseada nos números de Fibonacci.[1]

Em matemática, a Sucessão de Fibonacci (também Sequência de Fibonacci), é uma sequência de números inteiros, começando normalmente por 0 e 1, na qual, cada termo subsequente (numero de Fibonacci) corresponde a soma dos dois anteriores. A sequência recebeu o nome do matemático italiano Leonardo de Pisa, mais conhecido por Fibonacci (contração do italiano filius Bonacci), que descreveu, no ano de 1202, o crescimento de uma população de coelhos, a partir desta.[2] Tal sequência já era no entanto, conhecida na antiguidade.

Os números de Fibonacci são, portanto, os números que compõem a seguinte sequência (sequência A000045 na OEIS):

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, … (podendo ser omitido o zero inicial).[nota 1]

Em termos matemáticos, a sequência é definida recursivamente pela fórmula abaixo, sendo o primeiro termo F1= 1:

F_n = F_{n-1} + F_{n-2},

e valores inicias

F_1 = 1,\; F_2 = 1.[nota 2] [nota 3]

A sequência de Fibonacci tem aplicações na análise de mercados financeiros, na ciência da computação e na teoria dos jogos. Também aparece em configurações biológicas, como, por exemplo, na disposição dos galhos das árvores ou das folhas em uma haste,[3] no arranjo do cone da alcachofra, do abacaxi,[4] ou no desenrolar da samambaia.[5]

Origens[editar | editar código-fonte]

No ocidente, a sequência de Fibonacci apareceu pela primeira vez no livro Liber Abaci (1202) de Leonardo Fibonacci,[6] embora ela já tivesse sido descrita por gregos e indianos.[7] [8] [9] Fibonacci considerou o crescimento de uma população idealizada (não realista biologicamente) de coelhos. Os números descrevem o número de casais na população de coelhos depois de n meses se for suposto que:

Ilustração representativa da série de Fibonacci, demonstrando o crescimento populacinals de coelhos (carregando ovos de páscoa).
  • no primeiro mês nasce apenas um casal,
  • casais amadurecem sexualmente (e reproduzem-se) apenas após o segundo mês de vida,
  • não há problemas genéticos no cruzamento consanguíneo,
  • todos os meses, cada casal fértil dá a luz a um novo casal, e
  • os coelhos nunca morrem.

Mas genericamente, chama-se sequência de Fibonacci qualquer função g tal que g(n + 2) = g(n) + g(n + 1). Essas funções são precisamente as de formato g(n) = aF(n) + bF(n + 1) para alguns números a e b, então as sequências de Fibonacci formam um espaço vetorial com as funções F(n) e F(n + 1) como base.

Em particular, a sequência de Fibonacci com F(1) = 1 e F(2) = 3 é conhecida como os números de Lucas. A importância dos números de Lucas L(n) reside no fato deles gerarem a Proporção áurea para as n-ésimas potências:

\left( \frac 1 2 \left( 1 + \sqrt{5} \right) \right)^n = \frac 1 2 \left( L(n) + F(n) \sqrt{5} \right).

Os números de Lucas se relacionam com os de Fibonacci pela fórmula:

L(n) = F(n-1) + F(n+1).

Com esta fórmula podemos montar a sequência de Fibonacci e descobrir, por exemplo, quantos coelhos foram gerados no sexto mês, basta aplicar a fórmula descrita acima até chegar ao ponto inicial de 1 e 1, como mostra a figura abaixo:

Uma grade preenchida com quadrados cujos lados são números de Fibonacci, formando sucessivamente retângulos cada vez maiores e tendentes à razão áurea

Ou seja, no sexto mês foram gerados 8 coelhos.

  • F(6) = (F(6) - 1) + (F(6) - 2) = 5 e 4 → 8 ( Soma do Resultado de F(5) e F(4) )
  • F(5) = (F(5) - 1) + (F(5) - 2) = 4 e 3 → 5 ( Soma do Resultado de F(4) e F(3) )
  • F(4) = (F(4) - 1) + (F(4) - 2) = 3 e 2 → 3 ( Soma do Resultado de F(3) e F(2) )
  • F(3) = (F(3) - 1) + (F(3) - 2) = 2 e 1 → 2
  • F(2) = (F(2) - 1) + (F(2) - 2) = 1 e 0 → 1

e a primeira posição 1.

Note que a sequência de Fibonacci esta no resultado de cada posição: 1, 1, 2, 3, 5, 8, ...

Representações alternativas[editar | editar código-fonte]

Para analisar a sequência de Fibonacci (e, em geral, quaisquer sequências) é conveniente obter outras maneiras de representá-la matematicamente.

Função geradora[editar | editar código-fonte]

Uma função geradora para uma sequência qualquer a_0,a_1,a_2,\dots é a função

f(x) = a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+\cdots,

ou seja, uma série potências formais em que cada coeficiente é um elemento da sequência. Os números de Fibonacci possuem a seguinte função geradora

f\left(x\right)=\frac{x}{1-x-x^2}.

Quando se expande esta função em potências de x, os coeficientes são justamente os termos da sequência de Fibonacci:

\frac{x}{1-x-x^2}=0x^0+1x^1+1x^2+2x^3+3x^4+5x^5+8x^6+13x^7+\cdots

Fórmula explícita[editar | editar código-fonte]

Conforme mencionado por Johannes Kepler, a taxa de crescimento dos números de Fibonacci, que é F(n + 1) /F(n), tende à Proporção áurea, denominada φ. Ou seja, se pegarmos qualquer número da sequência de Fibonacci e dividirmos pelo anterior tenderá a 1,61803398875... (quanto maior for o número que pegarmos da sequência de Fibonacci, maior precisão teremos de φ). Esta é a raiz positiva da equação de segundo grau x² − x − 1 = 0, então φ² = φ + 1. Se multiplicarmos ambos os lados por φn, teremos φn+2 = φn+1 + φn, então a função φn é uma sequência de Fibonacci. É possível demonstrar que a raiz negativa da mesma equação, 1 − φ, tem as mesmas propriedades, então as duas funções φn e (1 − φ)n formam outra base para o espaço.

Ajustando os coeficientes para obter os valores iniciais adequados F(0) = 0 e F(1) = 1, tem-se a fórmula de Binet:

F\left(n\right) =  \frac{1}{\sqrt{5}}\left\{ \left ( \frac{1+\sqrt{5}}{2} \right )^n - \left ( \frac{1-\sqrt{5}}{2} \right )^n \right \} = {\phi^n \over \sqrt{5}} - {(1-\phi)^n \over \sqrt{5}}.

Este resultado também pode ser derivado utilizando-se a técnica de funções geradoras, ou a técnica de resolver relações de recorrência.

Quando n tende a infinito, o segundo termo tende a zero, e os números de Fibonacci tendem à exponencial φn/√5. O segundo termo já começa pequeno o suficiente para que os números de Fibonacci possam ser obtidos usando somente o primeiro termo arredondado para o inteiro mais próximo.

Forma matricial[editar | editar código-fonte]

Para argumentos muito grandes, quando utiliza-se um computador bignum, é mais fácil[carece de fontes?] calcular os números de Fibonacci usando a seguinte equação matricial:

\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n =
       \begin{bmatrix} F\left(n+1\right) & F \left(n\right) \\
                       F\left(n\right)   & F \left(n-1\right) \end{bmatrix},

em que a potência de n é calculada elevando-se a matriz ao quadrado repetidas vezes.

Um exemplo de aplicação desta expressão matricial é na demonstração do teorema de Lamé sobre o algoritmo de Euclides para o cálculo do MDC.[nota 4]

Representação da Série de Fibonacci na Molle Antonelliana em Turim, Itália.

Tipos de algoritmos[editar | editar código-fonte]

Há diversos algoritmos (métodos) para calcular o n-ésimo elemento da sequência de Fibonacci, sendo que os mais comuns empregam um das seguintes abordagens:

  • Recursiva
  • Iterativa
  • Dividir para conquistar

A seguir é apresentado um exemplo de cada um destes tipos de algoritmos em pseudocódigo.

Abordagem recursiva[editar | editar código-fonte]

A própria definição da sequência de Fibonacci pode ser tomada como base para implementar um algoritmo recursivo que gera os termos da sequência, como é mostrado a seguir: função {\it fib}(n)

se n<2 então
retorne n
caso contrário
retorne {\it fib}(n-1) + {\it fib}(n-2)

Apesar de simples, essa estratégia não é recomendável porque os mesmos valores são calculados muitas vezes (a não ser que a linguagem de programação guarde automaticamente os valores calculados nas chamadas anteriores da mesma função com o mesmo argumento). Uma análise cuidadosa mostra que a complexidade computacional do algoritmo é O(\varphi^n). Por esse motivo, normalmente calcula-se os números de Fibonacci "de baixo para cima",[carece de fontes?] começando com os dois valores 0 e 1, e depois repetidamente substituindo-se o primeiro número pelo segundo, e o segundo número pela soma dos dois anteriores.

Uma outra alternativa é fazer uso da fórmula apresentada na seção anterior, que envolve potências da proporção áurea. No entanto, isso pode não ser muito conveniente para valores grandes de n, já que os erros de arredondamento se acumulam e a precisão dos números de ponto flutuante normalmente não será suficiente.

Abordagem iterativa[editar | editar código-fonte]

Com o uso de um algoritmo iterativo como o que é mostrado a seguir, é possível obter a sequência um pouco mais eficientemente:

função {\it fib}(n)

i\gets 1
j\gets 0
para k desde 1 até n faça
t\gets i+j
i\gets j
j\gets t
retorne j

Neste caso, a complexidade computacional do algoritmo é O(n).

Abordagem dividir para conquistar[editar | editar código-fonte]

O algoritmo abaixo é bem mais eficiente e baseia-se na representação matricial da sequência de Fibonacci. Sua complexidade computacional é O(\log(n)).

função {\it fib}(n)

se n\leq0 então
retorne 0
i\gets n-1
(a,b) \gets (1,0)
(c,d) \gets (0,1)
enquanto i > 0 faça
se i é par então
(a,b) \gets (db + ca, d(b + a) + cb)
(c,d) \gets (c^2 + d^2, d(2c + d))
i\gets i\div 2
retorne a+b

Aplicações[editar | editar código-fonte]

Os números de Fibonacci são importantes para a análise em tempo real do algoritmo euclidiano, para determinar o máximo divisor comum de dois números inteiros.

Matiyasevich mostrou que os números de Fibonacci podem ser definidos por uma Equação diofantina, o que o levou à solução original do Décimo Problema de Hilbert.

Os números de Fibonacci aparecem na fórmula das diagonais de um triângulo de Pascal (veja coeficiente binomial).

Um uso interessante da sequência de Fibonacci é na conversão de milhas para quilômetros. Por exemplo, para saber aproximadamente a quantos quilômetros 5 milhas correspondem, pega-se o número de Fibonacci correspondendo ao número de milhas (5) e olha-se para o número seguinte (8). 5 milhas são aproximadamente 8 quilômetros. Esse método funciona porque, por coincidência, o fator de conversão entre milhas e quilômetros (1.609) é próximo de φ (1.618) (obviamente ele só é útil para aproximações bem grosseiras: além do factor de conversão ser diferente de φ, a série converge para φ).

Exemplo de sons Fibonacci

Em música os números de Fibonacci são utilizados para a afinação, tal como nas artes visuais, determinar proporções entre elementos formais. Um exemplo é a Música para Cordas, Percussão e Celesta de Béla Bartók.

Le Corbusier usou a sequência de Fibonacci na construção do seu modulor, um sistema de proporções baseadas no corpo humano e aplicadas ao projeto de arquitetura.

Em The Wave Principal, Ralph Nelson Elliot defende a ideia que as flutuações do mercado seguem um padrão de crescimento e decrescimento que pode ser analisado segundo os números de Fibonacci, uma vez determinada a escala de observação. Defende que as relações entre picos e vales do gráfico da flutuação de bolsa tendem a seguir razões numéricas aproximadas das razões de dois números consecutivos da sequência de Fibonacci.

Fib bolsa 1.jpg

Teorias mais recentes, defendem que é possível encontrar relações “de ouro” entre os pontos de pico e os de vale, como no gráfico abaixo:

Fib bolsa 2.jpg

Se tomarmos o valor entre o início do ciclo e o primeiro pico, e o compararmos com o valor entre este pico e o pico máximo, encontraremos também o número de ouro. O ciclo, naturalmente, pode estar invertido, e os momentos de pico podem se tornar momentos de vale, e vice-versa.


Generalizações[editar | editar código-fonte]

Uma generalização da sequência de Fibonacci são as sequências de Lucas. Um tipo pode ser definido por:

U(0) = 0
U(1) = 1
U(n+2) = PU(n+1) − QU(n)

onde a sequência normal de Fibonacci é o caso especial de P = 1 e Q = -1. Outro tipo de sequência de Lucas começa com V(0) = 2, V(1) = P. Tais sequências têm aplicações na Teoria de Números e na prova que um dado número é primo (primalidade).

Os polinômios de Fibonacci são outra generalização dos números de Fibonacci.

Identidades[editar | editar código-fonte]

Searchtool.svg
Esta página ou secção foi marcada para revisão, devido a inconsistências e/ou dados de confiabilidade duvidosa (desde fevereiro de 2014). Se tem algum conhecimento sobre o tema, por favor, verifique e melhore a consistência e o rigor deste artigo. Considere utilizar {{revisão-sobre}} para associar este artigo com um WikiProjeto e colocar uma explicação mais detalhada na discussão.
  • F(n + 1) = F(n) + F(n − 1)
  • F(0) + F(1) + F(2) + … + F(n) = F(n + 2) − 1
  • F(1) + 2 F(2) + 3 F(3) + … + n F(n) = n F(n + 2) − F(n + 3) + 2

É possível essas identidades usando diferentes métodos. Mas, entretanto, nós queremos demonstrar uma elegante prova para cada um de seus usos aqui. Particularmente, F(n) podem ser interpretados como o número de formas de adicionar 1's e 2's até n − 1, convencionando-se que F(0) = 0, significando que nenhuma soma irá adicionar até -1, e que F(1) = 1, significando que a soma 0 será "adicionada" até 0. Aqui a ordem dos números importa. Por exemplo, 1 + 2 e 2 + 1 são consideradas duas diferentes somas e são contadas duas vezes.

Prova da primeira identidade[editar | editar código-fonte]

Sem perda de generalidade, podemos assumir n ≥ 1. Então F(n + 1) conta o número de formas de somar 1's e 2's até n.

Quando a primeira parcela é 1, há F(n) formas de completar a contagem para n − 1; quando a primeira parcela é 2, há F(n − 1) formas de completar a contagem para n − 2. Portanto, no total, há F(n) + F(n − 1) formas de completar a contagem para n.

Prova da segunda identidade[editar | editar código-fonte]

Contamos o número de formas de somar 1's e 2's até n + 1 de forma que pelo menos uma das parcelas é 2.

Como antes, há F(n + 2) formas de somar 1's e 2's até n + 1 quando n ≥ 0. Já que há apenas uma soma n + 1 que não usa nenhum 2, a saber 1 + … + 1 (n + 1 termos), subtraímos 1 de F(n + 2).

Equivalentemente, podemos considerar a primeira ocorrência de 2 como uma parcela.

Se, em uma soma, a primeira parcela é 2, então há F(n) formas de completar a contagem para n − 1. Se a segunda parcela é 2, mas a primeira é 1, então há F(n − 1) formas de completar a contagem para n − 2. Continuando este raciocínio iremos chegar à (n + 1)-ésima parcela. Se é 2, mas todas as n parcelas anteriores são 1's, então há F(0) formas de completar a contagem para 0. Se uma soma contém 2 como uma parcela, a primeira ocorrência de tal parcela deve tomar lugar entre a primeira e a (n + 1)-ésima posição. Portanto F(n) + F(n − 1) + … + F(0) dá a contagem desejada.

Prova da Terceira Identidade[editar | editar código-fonte]

Essa identidade pode ser estabelecida em duas fases. Primeiro, contamos o número de formas de somar 1's e 2's até -1, 0, …, ou n + 1 tal que pelo menos uma das parcelas seja 2.

Pela nossa primeira igualdade, há F(n + 2) − 1 formas de somar até n + 1; F(n + 1) − 1 formas de somar até n; …; e, finalmente, F(2) − 1 formas de somar até 1.

Como F(1) − 1 = F(0) = 0 , podemos adicionar todos as somas n + 1 e aplicar a segunda igualdade novamente para obter:    [F(n + 2) − 1] + [F(n + 1) − 1] + … + [F(2) − 1]

= [F(n + 2) − 1] + [F(n + 1) − 1] + … + [F(2) − 1] + [F(1) − 1] + F(0)
= F(n + 2) + [F(n + 1) + … + F(1) + F(0)] − (n + 2)
= F(n + 2) + F(n + 3) − (n + 2).

Por outro lado , observamos a partir da segunda igualdadee que existem

  • F(0) + F(1) + … + F(n − 1) + F(n) meios somando com n + 1;
  • F(0) + F(1) + … + F(n − 1) meios somando com n;

……

  • F(0) meio somando com -1.

Somando todas as somas n + 1 , vemos que há

  • (n + 1) F(0) + n F(1) + … + F(n) formas de somar até -1, 0, …, ou n + 1.

Já que os dois métodos de contagem se referem ao mesmo número , temos : (n + 1) F(0) + n F(1) + … + F(n) = F(n + 2) + F(n + 3) − (n + 2)

Finalmente, completamos a prova subtraindo a igualdade acima de n + 1 vezes a segunda igualdade.

Número Tribonacci[editar | editar código-fonte]

Um número Tribonacci assemelha-se a um número de Fibonacci, mas em vez de começarmos com dois termos pré-definidos, a sequência é iniciada com três termos pré-determinados, e cada termo posterior é a soma dos três termos precedentes. Os primeiros números de uma pequena sequência Tribonacci são: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890, 66012, 121415, 223317, etc.[10]

A Sequência de Fibonacci na natureza[editar | editar código-fonte]

A sequência de Fibonacci está intrinsicamente ligada à natureza. Estes números são facilmente encontrados no arranjo de folhas do ramo de uma planta, em copas das árvores ou até mesmo no número de pétalas das flores.

As sementes das flores, frutos e, de forma particulamente interessante, as pinhas, trazem no seu escopo natural esta sequência. Como esta proporção trata-se de uma sucessão numérica, é possível perceber, em vários traços notáveis, a manifestação desta em muitos aspectos da natureza de maneira estética e funcional. Tal linha de análise é, muitas vezes, utilizada como base explicativa para a teoria criacionista denominada Design Inteligente.

Nautilus[editar | editar código-fonte]

A Sequencia Fibonacci no Nautilus.

Na espiral do nautilus, por exemplo, pode ser facilmente percebida a sequência de Fibonacci. A composição de quadrados com lados de medidas proporcionais aos números da sequência mostram a existência desta sucessão numérica nesta peça natural.

O primeiro quadrado terá os lados com medida 1, o segundo também, o terceiro terá os seus lados com medida 2, o quarto com medida 3, o quinto com medida 5, o sexto com medida 8 e, assim, sucessivamente.

Anatomia humana - dentição[editar | editar código-fonte]

Vistos frontalmente, os dentes anteriores estão na proporção áurea entre si. Por exemplo, a largura do incisivo central está proporcional à largura do incisivo lateral, assim como o incisivo lateral está proporcional ao canino, e o canino ao primeiro pré-molar.

O segmento “incisivo central até o primeiro pré-molar” se encontra na proporção áurea em relação ao canto da boca (final do sorriso). A altura do incisivo central está na proporção áurea em relação à largura dos dois centrais Na face relaxada, a linha dos lábios divide o terço inferior da face nos segmentos da proporção áurea: “da ponta do nariz à linha dos lábios” e “da linha dos lábios até o queixo” (retângulo de ouro).

A espiral[editar | editar código-fonte]

Bromelia.png

Na espiral formada pela folha de uma bromélia, pode ser percebida a sequência de Fibonacci, através da composição de quadrados com arestas de medidas proporcionais aos elementos da sequência, por exemplo: 1, 1, 2, 3, 5, 8, 13… , tendentes à razão áurea. Este mesmo tipo de espiral também pode ser percebida na concha do Nautilus marinho.

A espiral de Fibonacci também é o símbolo da Sociedade Brasileira de Matemática.

Arranjos nas folhas[editar | editar código-fonte]

Os arranjos das folhas de algumas plantas em torno do caule são números de Fibonacci. Com este arranjo, todas as folhas conseguem apanhar os raios solares uniformemente. Esta formação, em caso de chuva, também facilita o escoamento da água na planta.

Reprodução das abelhas[editar | editar código-fonte]

A seqüência de Fibonacci descreve perfeitamente a reprodução das abelhas. Recentemente, uma análise matemática-histórica do contexto e da proximidade com a cidade de "Bejaia", em importante exportador de cera na época de Leonardo de Pisa (que é derivado da versão francesa do nome desta cidade, ou seja "Boujie", o que significa que "vela" em francês), sugeriu ele fez o que realmente a abelha-produtores de Bejaia eo conhecimento das linhagens de abelhas que realmente inspirou os números da seqüência de Fibonacci, em vez de o modelo de reprodução de coe[11] .

A Sequência de Fibonacci no cinema[editar | editar código-fonte]

O filme Pi de Darren Aronofsky apresenta várias referências à sequência de Fibonacci. Seu protagonista é Maximillian "Max" Cohen (Sean Gullette), um matemático brilhante e atormentado que tenta decodificar o padrão numérico do mercado de ações. Em uma cena, Max desenha quadrados com arestas de medidas proporcionais aos elementos da sequência de Fibonacci e os sobrepõe ao desenho do Homem Vitruviano de Leonardo da Vinci, trazendo-lhe certezas às suas convicções de que a matemática é a linguagem da natureza. Em outra cena, Max apanha uma concha em uma praia e observa a espiral nela descrita. Em outro trecho do filme, Max encontra o judeu Lenny Meyer, que lhe fala da crença em que a Torah seria uma sequência de números que formam um código enviado por Deus, quando entendidas as correspondências entre as letras do alfabeto hebraico a números. Max diz que alguns dos conceitos apresentados por Lenny são similares a uma sequência de Fibonacci.

A sequência também é tema de um episódio da série Touch da Rede FOXe de Criminal Minds, no canal AXN.

Em O Código Da Vinci, a sequência de Fibonacci foi usada como um código, mas também para confundir os personagens.

Repfigits[editar | editar código-fonte]

Um repfigit ou número de Keith é um número inteiro, superior a 9, tal que os seus dígitos, ao começar uma sequência de Fibonacci, alcançam posteriormente o referido número. Um exemplo é 47, porque a sequência de Fibonacci que começa com 4 e 7 (4, 7, 11, 18, 29, 47) alcança o 47. Outro exemplo é 197: 1+9+7= 17, 9+7+17= 33, 7+17+33= 57, 17+33+57= 107, 33+57+107= 197.

Um repfigit pode ser uma sequência de Tribonacci se houver três dígitos no número, e de Tetranacci se o número tiver quatro dígitos, etc.

Alguns Números de Keith conhecidos: 14, 19, 28, 47, 61, 75, 197, 742, 1104, 1537, 2208, 2580, 3684, 4788, 7385, 7647, 7909, 31331, 34285…

Notas e referências

Notas

  1. Pela convenção moderna a sequência inicial começa por F0 = 0. No livro Liber Abaci (veja Seção Origens) esta começava com F1 = 1, omitindo-se o zero inicial.
  2. Ou, de acordo com a nota: F_0 = 0,\; F_1 = 1.
  3. Pode ser representada também pela fórmula matemática: 
  F(n) =
  \left\{
   \begin{matrix}
    0\,,\qquad\qquad\qquad\quad\,\ \ \,&&\mbox{se }n=0\,;\ \ \\
    1,\qquad\qquad\qquad\qquad\,&&\mbox{se }n=1;\ \ \,\\
    F(n-1)+F(n-2)&&\mbox{outros casos.}
   \end{matrix}
  \right.
 .
  4. Veja por exemplo o capítulo sobre o máximo divisor comum do wikilivro de Teoria de números.

Referências

  1. Andean Calculators
  2. Fibonacci-Numbers (Fibonacci-Zahlen), Homepage from Michael Becker. Página em alemão. Visitada 2014-01-28.
  3. S. Douady and Y. Couder. (1996). "Phyllotaxis as a Dynamical Self Organizing Process" (PDF). Journal of Theoretical Biology 178 (178): 255–274. DOI:10.1006/jtbi.1996.0026.
  4. Jones, Judy; William Wilson. An Incomplete Education. [S.l.]: Ballantine Books, 2006. p. 544. ISBN 978-0-7394-7582-9
  5. A. Brousseau. (1969). "Fibonacci Statistics in Conifers". Fibonacci Quarterly (7): 525–532.
  6. Sigler, Laurence E. (trad.). ibonacci's Liber Abaci. [S.l.]: Springer-Verlag, 2002. ISBN 0-387-95419-8 Capítulo II.12, pp. 404–405.
  7. Susantha Goonatilake. Toward a Global Science. [S.l.]: Indiana University Press, 1998. p. 126. ISBN 9780253333889
  8. Singh, Parmanand. (1985). "The So-called Fibonacci numbers in ancient and medieval India". Historia Mathematica 12 (3): 229–244. DOI:10.1016/0315-0860(85)90021-7.
  9. Donald Knuth. The Art Of Computer Programming, Volume 1. [S.l.]: Addison Wesley, 1968. ISBN 8177587544
  10. A000073 OEIS
  11. Scott, T.C.; Marketos, P. (March, 2014) (PDF), On the Origin of the Fibonacci Sequence, MacTutor History of Mathematics archive, University of St Andrews, http://www-history.mcs.st-andrews.ac.uk/Publications/fibonacci.pdf 

Ver também[editar | editar código-fonte]

Ligações externas[editar | editar código-fonte]