Ácido glutâmico

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
NoFonti.svg
Este artigo ou se(c)ção cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo (desde setembro de 2013). Por favor, adicione mais referências e insira-as corretamente no texto ou no rodapé. Material sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
Ácido glutâmico
Alerta sobre risco à saúde
Glutaminsäure - Glutamic acid.svg L-glutamic-acid-3D-sticks2.png
Nome IUPAC (2S)-2-aminopentanedioic acid
Identificadores
Número CAS 56-86-0
PubChem 611
ChemSpider 591
SMILES
Propriedades
Fórmula química C5H9NO4
Massa molar 147.11 g mol-1
Compostos relacionados
Outros catiões/cátions Glutamato monossódico
Glutamato dissódico
Aminoácidos relacionados Ácido aspártico (2-aminobutanodioico)
Glutamina (carboxila do carbono 5 trocada por uma amida)
Ácido alfa-amino-adípico (2-amino-hexanodioico)
Compostos relacionados Ácido glutárico (pentanodioico)
Ácido alfacetoglutárico (2-oxo-pentanodioico)
Ácido alfa-hidroxi-glutárico
Exceto onde denotado, os dados referem-se a
materiais sob condições normais de temperatura e pressão

Referências e avisos gerais sobre esta caixa.
Alerta sobre risco à saúde.

O ácido glutâmico é um aminoácido não essencial, um dos 20-22 aminoácidos proteinogênicos. Seus códons são GAA e GAG.

O ânion carboxilato e os sais do ácido glutâmico são conhecidos como glutamatos. O glutamato é um importante neurotransmissor, que desempenha um papel chave na potenciação de longa duração e é importante para o aprendizado e a memória.[1]

Nomenclatura Ácido glutâmico ou glutamato
Símbolo Glu ou E
Nome químico Ácido 2-aminoglutárico
Classificação Aminoácido polar ácido
Estrutura Linear
L-Glutamic Acid.png
Estrutura Tridimensional
L-glutamic-acid-3D-sticks.png

Estrutura[editar | editar código-fonte]

Como o seu nome indica, possui um ácido carboxílico como grupo funcional na sua cadeia lateral.

Biossíntese[editar | editar código-fonte]

Reacção Enzimas
Glutamina + H2O → Glu + NH3 GLS, GLS2
Ácido N-acetilglutâmico + H2O → Glu + Acetato (desconhecida)
α-cetoglutarato + NADPH + NH4+Glu + NADP+ + H2O GLUD1, GLUD2
α-cetoglutarato + α-aminoácido → Glu + α-oxoácido transaminase
1-pirrolina-5-carboxilato + NAD+ + H2O → Glu + NADH ALDH4A1
N-formimino-L-glutamato + ácido fólicoGlu + Ácido 5-formimino-fólico FTCD

Funções[editar | editar código-fonte]

Na dieta[editar | editar código-fonte]

O glutamato está presente em diversos alimentos. É responsável por um dos gostos básicos que constituem o paladar humano - umami. Por esta razão, o glutamato monossódico é usado como aditivo alimentar, para realçar o sabor de alimentos.

Cerca de 95% do glutamato ingerido é absorvido rapidamente no intestino, sendo que a metade é metabolizada em CO2. Provou-se, através de pesquisas, que o glutamato aí metabolizado é o maior contribuinte para a produção da energia usada pelo intestino.[2]

No metabolismo[editar | editar código-fonte]

O glutamato é um aminoácido importante no metabolismo humano. É o produto da transaminação do α-cetoglutarato, participando então na produção de metabolitos como o piruvato ou o oxaloacetato, que participam em vias metabólicas como a gliconeogénese, a glicólise ou o ciclo dos ácidos tricarboxílicos:

alanina + α-cetoglutarato ⇌ piruvato + glutamato
aspartato + α-cetoglutarato ⇌ oxaloacetato + glutamato

O glutamato sofre desaminação a α-cetoglutarato e amónia através da seguinte reacção, catalisada pela glutamato desidrogenase:

glutamato + água + NAD+ → α-cetoglutarato + NADH + amónia + H+

A amónia é excretada sob a forma de ureia (em humanos), que é sintetizada no fígado. O excesso de azoto no organismo pode ser então excretado através da ligação entre reações de transaminação e desaminação: aminoácidos são transformados em α-cetoácidos enquanto o grupo amina é transferido para o α-cetoglutarato, formando glutamato; este sofre então a desaminação que origina a amónia e depois a ureia.

Como neurotransmissor[editar | editar código-fonte]

O glutamato é um neurotransmissor excitatório do sistema nervoso, o mais comum em mamíferos. É armazenado em vesículas nas sinapses. O impulso nervoso causa a libertação de glutamato no neurónio pré-sináptico; na célula pós-sináptica, existem receptores (como os receptores NMDA) que ligam o glutamato e se activam. Pensa-se que o glutamato esteja envolvido em funções cognitivas no cérebro, como a aprendizagem e a memória. As membranas de neurónios e da glia possuem transportadores de glutamato que retiram rapidamente este aminoácido do espaço extracelular.

O glutamato é precursor na síntese de GABA em neurónios produtores de GABA.

Neurotoxicidade[editar | editar código-fonte]

Em situações de patologia cerebral (danos ou doenças), os transportadores podem funcionar de forma reversa e causar a acumulação e concentrações excessivas de glutamato no espaço extracelular. Esta reversão provoca a entrada de iões cálcio (Ca2+) nas células, através de receptores NMDA, levando a danos neuronais e eventualmente morte celular (apoptose). Este processo é conhecido como excitotoxicidade e pode ser letal para os neurônios, particularmente no caso de ativação dos receptores NMDA. Assim a toxicidade, pode ser causada por:

  • alterações miticondriais decorrentes de um influxo excessivo e descontrolado de Ca2+ na célula, ultrapassando a sua capacidade de estocagem e levando a uma liberação de citocromo p450, com a subsequente apoptose.[3]
  • amplificação ou superexpressão de factores de transcrição de genes pró-apoptóticos ou repressão de factores de transcrição de genes antiapoptóticos mediada pelo glutamato e pelo Ca2+.

A excitotoxicidade devida à acumulação de glutamato ocorre em episódios de isquémia cerebral e apoplexia e está associada a doenças como esclerose lateral amiotrófica, latirismo e doença de Alzheimer.

Referências

  1. Robert Sapolsky. "Biology and Human Behavior: The Neurological Origins of Individuality, 2nd edition", 'The Teaching Company'. “see pages 19 and 20 of Guide Book”
  2. Intestinal glutamate metabolism (em inglês)
  3. Mol Pharmacol. (1989), vol.36, nº1, p.106-112.