Lei da gravitação universal

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book.svg
Esta página ou secção não cita nenhuma fonte ou referência, o que compromete sua credibilidade (desde agosto de 2009).
Por favor, melhore este artigo providenciando fontes fiáveis e independentes, inserindo-as no corpo do texto por meio de notas de rodapé. Encontre fontes: Googlenotícias, livros, acadêmicoScirusBing. Veja como referenciar e citar as fontes.

A gravitação universal é uma força fundamental de atração que age entre todos os objetos por causa de suas massas, isto é, a quantidade de matéria de que são constituídos. A gravitação mantém o universo unido. Por exemplo, ela mantém juntos os gases quentes no sol e faz os planetas permanecerem em suas órbitas. A gravidade da Lua causa as marés oceânicas na terra. Por causa da gravitação, os objetos sobre a terra são atraídos em seu sentido. A atração física que um planeta exerce sobre os objetos próximos é denominada força da gravidade. A lei da gravitação universal foi formulada pelo físico inglês Sir Isaac Newton em sua obra Philosophiae Naturalis Principia Mathematica, publicada em 1687, que descreve a lei da gravitação universal e as Leis de Newton — as três leis dos corpos em movimento que assentaram-se como fundamento da mecânica clássica.

História[editar | editar código-fonte]

Ainda que os efeitos da gravidade sejam fáceis de notar, a busca de uma explicação para a força gravitacional tem embaraçado o homem durante séculos. O filósofo grego Aristóteles empreendeu uma das primeiras tentativas de explicar como e por que os objetos caem em direção à Terra. Entre suas conclusões, estava a ideia de que os objetos pesados caem mais rápido que os leves. Embora alguns tenham se oposto a essa concepção, ela foi comumente aceita até o fim do século XVII, quando as descobertas do cientista italiano Galileu Galilei ganharam aceitação. De acordo com Galileu, todos os objetos caíam com a mesma aceleração, a menos que a resistência do ar ou alguma outra força os freasse.

Os antigos astrônomos gregos estudaram os movimentos dos planetas e da Lua. Entretanto, o paradigma aceito hoje foi determinado por Isaac Newton, físico e matemático inglês, baseado em estudos e descobertas feitas pelos físicos que até então trilhavam o caminho da gravitação. Como Newton mesmo disse, ele chegou a suas conclusões porque estava "apoiado em ombros de gigantes". No início do século XVII, Newton baseou sua explicação em cuidadosas observações dos movimentos planetários, feitas por Tycho Brahe e por Johannes Kepler. Newton estudou o mecanismo que fazia com que a Lua girasse em torno da Terra. Estudando os princípios elaborados por Galileu Galilei e por Johannes Kepler, conseguiu elaborar uma teoria que dizia que todos os corpos que possuíam massa sofreriam atração entre si.

A partir das leis de Kepler, Newton mostrou que tipos de forças devem ser necessárias para manter os planetas em suas órbitas. Ele calculou como a força deveria ser na superfície da Terra. Essa força provou ser a mesma que da à massa sua aceleração.

Diz uma lenda que, quando tinha 23 anos, Newton viu uma maçã cair de uma árvore e compreendeu que a mesma força que a fazia cair mantinha a Lua em sua órbita em torno da Terra.

Formulação da Lei da Gravitação Universal[editar | editar código-fonte]

Dois corpos puntiformes m1 e m2 atraem-se exercendo entre si forças de mesma intensidade F1 e F2, proporcionais ao produto das duas massas e inversamente proporcionais ao quadrado da distância (r) entre elas. G é a constante gravitacional.

A lei da gravitação universal diz que dois objetos quaisquer se atraem gravitacionalmente por meio de uma força que depende das massas desses objetos e da distância que há entre eles.

Dados dois corpos de massa m_1 e m_2, a uma distância r entre si, esses dois corpos se atraem mutuamente com uma força que é proporcional à massa de cada um deles e inversamente proporcional ao quadrado da distância que separa esses corpos. Matematicamente, essa lei pode ser escrita assim:

\vec F_{1} = - \vec F_{2} = G \frac {m_{1}m_{2}} {r^{2}}\hat r

onde

F1 (F2) é a força, sentida pelo corpo 1 (2) devido ao corpo 2 (1), medida em newtons;
G=6,67 \times 10^{-11}\text{Nm}^2/\text{kg}^2 é constante gravitacional universal, que determina a intensidade da força,
m 1 e m2 são as massas dos corpos que se atraem entre si, medidas em quilogramas; e
r é a distância entre os dois corpos, medida em metros;
\hat r o versor do vetor que liga o corpo 1 ao corpo 2.

A constante gravitacional universal foi medida anos mais tarde por Henry Cavendish. A descoberta da lei da gravitação universal se deu em 1685 como resultado de uma série de estudos e trabalhos iniciados muito antes.

Tomando como exemplo a massa de próton e um elétron, a força da gravidade será de 3,6 × 10−8 N (Newtons) ou 36 nN.

O estabelecimento de uma lei de gravitação, que unifica todos os fenômenos terrestres e celestes de atração entre os corpos, teve enorme importância para a evolução da ciência moderna.

Contudo, podemos aprimorar a lei da gravitação universal adicionando sinais (+ ou - ) à resposta, quando estivermos considerando "massas de luz" ou "fótons" . A lei da gravitação universal assume o sinal (-) quando ocorre o deslocamento de fótons "massas de luz" de uma fonte luminosa (Sol), ou melhor, assumindo característica de repulsão e não de atração. Por outro lado, a lei da gravitação universal reassume o sinal (+) quando ocorre o deslocamento de fótons para locais de atração desta "massas de luz", locais conhecidos como "Buracos Negros".

Esta passagem carece de fontes

Ver também[editar | editar código-fonte]