Crustáceo

Origem: Wikipédia, a enciclopédia livre.
(Redirecionado de Crustacea)
Saltar para a navegação Saltar para a pesquisa
Como ler uma infocaixa de taxonomiaCrustacea
crustáceos
Woda-6 ubt.jpeg
Classificação científica
Reino: Animalia
Filo: Arthropoda
Subfilo: Crustacea
Classes
Remipedia

Cephalocarida

Branchiopoda - pulga-d'água, Artemia

Ostracoda

Maxillopoda

Cirripedia - cracas

Malacostraca - lagostas, caranguejos, camarão, tamarutacas, tatuzinho-de-jardim, siri etc.

Wikispecies
O Wikispecies tem informações sobre: Crustáceo

Crustacea (crustáceos) é um subfilo do filo Arthropoda (artrópodes) que agrupa um numeroso e diversificado conjunto de invertebrados que inclui aproximadamente de 67 000 espécies validamente descritas. A maioria dos crustáceos são organismos marinhos, como as lagostas, camarões, cracas, percebes, tatuís (Emerita brasiliensis, que vivem enterrados nas areias das praias do Brasil), os siris e os caranguejos, mas também existem crustáceos de água doce, como a pulga-d'água (Daphnia) e mesmo crustáceos terrestres como o bicho-de-conta.

Podem encontrar-se crustáceos em praticamente todos os ambientes do mundo, desde as fossas abissais dos oceanos até glaciares e lagoas temporárias dos desertos. O corpo dos crustáceos é dividido em espécies mais primitivas (Classe Remipedia) em cabeça e tronco, já em crustáceos mais derivados o corpo é dividido em cabeça, tórax (pereon) e abdômen (pléon). Estes animais possuem um corpo metamerizado, ou seja, organizado em segmentos, primitivamente cada segmento tem um par de apêndices, mas em espécies que evoluíram recentemente esse número pode variar. Apêndices presentes na cabeça estão relacionados à alimentação e aos sentidos, já os apêndices torácicos e abdominais estão envolvidos na locomoção, na reprodução e na respiração. Realizam as trocas gasosas através de brânquias, mas em espécies muito pequenas, tais trocas ocorrem em áreas modificadas do exoesqueleto. Este é formado por quitina, proteínas e carbonato de cálcio, a cutícula (exoesqueleto) é formado por duas partes, a epicutícula e a procutícula, para que o animal cresça é necessário que o exoesqueleto seja trocado (ecdise).

Existe uma grande variedade de hábitos alimentares nos crustáceos, podendo ser filtradores de matéria orgânica em suspensão, carnívoros, herbívoros, saprófagos. Comumente, determinados apêndices torácicos, adaptaram-se para a coleta de alimento, predação ou consumo de suspensão. A boca é ventral e o trato digestivo quase sempre reto.[1] O sistema digestivo dos crustáceos é dividido em 3 regiões, anterior, mediana e posterior. A região anterior é recoberta por cutícula e pode apresentar cerdas e "dentes" que ajudam na digestão mecânica do alimento, a região mediana é responsável pela digestão química e absorção dos nutrientes e a região posterior é responsável pela absorção da água , do armazenamento das fezes e também é recoberta por cutícula.

Excreção[editar | editar código-fonte]

A excreção é feita pelas glândulas antenais ou glândulas verdes, em conjunto com as glândulas maxilares; são glândulas de igual função e estrutura, diferindo apenas na posição em que abrem seus poros. Também existem nefrócitos, que são células que fagocitam os excretas e fazem sua degradação intracelularmente. A principal excreta nitrogenada produzida é a amônia.[1]

Reprodução[editar | editar código-fonte]

A maioria dos crustáceos é dioica, eles têm sexos separados, existem apêndices especializados para a reprodução; por exemplo, em decápodos podem se distinguir um par anterior de pleópodos como tendo função copulatória. Os ovários são semelhantes aos testículos em estrutura e localização. Algumas espécies apresentam mesmo dimorfismo sexual, não só em termos do tamanho, mas também de outras características: no caranguejo de mangal, Scylla serrata, uma espécie abundante da região indo-pacífica, a fêmea é maior que o macho e têm o abdome mais largo, podendo assim incubar os ovos com maior segurança.

Durante a cópula, o macho transfere para a fêmea uma cápsula com os espermatozoides, denominada espermatóforo, que ela abre na altura em que liberta os óvulos, este espermatóforo é depositado na espermateca, que é uma espécie de receptáculo seminal, os ovidutos em alguns grupos conectam diretamente com as espermatecas, e usam suas aberturas como gonóporos. A cópula pode ser precedida por comportamentos de corte, principalmente em alguns decápodos, por exemplo, o Caranguejo-Eremita, macho segura a fêmea com um quelípodo e bate atingindo-a com o outro, ou puxando-a para frente e para trás. Os sexos também podem se atrair por meio de feromônios. Os ovos são centrolécitos; nesse tipo de ovo, o núcleo é circundado por uma pequena “ilha” de citoplasma não-gemado no meio de uma grande massa de gema. A clivagem é superficial. Os ovos são muitas vezes incubados pela fêmea até o embrião estar totalmente formado, não sendo incomum encontrar camarões e caranguejos com ovos presos às patas abdominais. Os ovos geralmente libertam larvas chamadas de Náuplio que são pelágicas, fazendo parte do zooplâncton.

A partenogênese pode ser observada em algumas espécies de crustáceos, nas quais as fêmeas são capazes de se reproduzirem sem que haja a cópula com um macho.

Morfologia dos crustáceos[editar | editar código-fonte]

Para além das características gerais, é importante mencionar os principais apêndices de um crustáceo típico, localizados dos lados de cada segmento e cujo número e aspecto são usados para a sua identificação.[2]

  • Na cabeça:
  • No tórax:
    • maxilípedes ou “patas-maxilas” , são peças bucais adicionais, ajudam no processo da alimentação(0-3 pares);
    • pereópodes ou “patas-de-locomoção” podendo apresentar o primeiro par de pereópodes quelado usado para defesa (até 5 pares);
  • No abdómen:
    • pleópodes ou “patas-nadadoras” (depende do número de segmentos) – muitas vezes com brânquias e outras adaptações para segurarem os ovos;
    • urópodes, que são o equivalente à cauda dos peixes, localizados no último segmento abdominal, podendo formar junto com o télson o leque caudal.

Estes apêndices são igualmente articulados e tipicamente birramosos e podem apresentar birreme (bifurcação nos apêndices); as suas partes típicas são:

  • o protópode, a porção que articula com o corpo do animal;
  • o exópode, a porção seguinte, localizada do lado externo do corpo;
  • o endópode, uma parte paralela ao exópode, localizada do lado interno do corpo;
  • os epípodes e endites, que são apêndices adicionais do protópode, os primeiros localizados no corpo do protópode, os segundos na sua extremidade.

Um apêndice com todas estas partes também se denomina filópode.

Ontogenia e metamorfoses[editar | editar código-fonte]

Os crustáceos apresentam dois tipos de estratégias de desenvolvimento: (1) por crescimento direto do animal que emerge do ovo e (2) por metamorfoses, através de uma série de fases larvares.

O crescimento direto pode ser simples, em que o animal apenas aumenta de tamanho até atingir a maturação sexual, ou anamórfico, em que a morfologia do animal se altera em cada muda, seja pelo aumento do número de segmentos ou de apêndices no corpo; por vezes, a primeira larva pode ser bastante diferente do adulto.

O crescimento por metamorfoses, em que as larvas são normalmente pelágicas, é uma estratégia de reprodução que assegura a maior dispersão da espécie.

Os crustáceos apresentam três tipos básicos de larvas:

  • Náuplio – formado por três segmentos cefálicos com os apêndices típicos da cabeça, antênulas, antenas e mandíbulas e com um único olho na parte central do corpo; o tronco começa sem segmentação, mas em cada muda vão aparecendo novos segmentos, no último dos quais se encontra um télson birramoso; a cabeça é protegida por um “escudo cefálico”, um princípio de carapaça. Em algumas espécies, o olho naupliar é conservado nos adultos.

Os restantes dois tipos de larvas encontram-se apenas nos membros do grupo Malacostraca, ao qual pertencem os camarões e caranguejos:

  • Zoea – é uma forma com uma grande carapaça, que protege a cabeça e parte do tórax, um abdome segmentado e com um telson bem desenvolvido; os olhos compostos formam-se nesta fase; apresenta exópodes natatórios nos apêndices tráxicos, mas os pleópodes estão ausentes ou pouco desenvolvidos.
  • Mysis – é ainda uma larva pelágica com apêndices birramosos em todos os segmentos torácicos e abdominais; apresenta formas muito variadas, dependendo das espécies.

Existe ainda uma quarta forma que faz a transição para o estado adulto (nos crustáceos demersais é nesta fase que o animal se fixa no substrato) e que é muitas vezes considerada uma pós-larva:

  • Megalopa - caracteriza-se por apresentar pleópodes nos segmentos abdominais.

As diferenças no aspecto das várias larvas dos crustáceos levaram no passado a considerá-las espécies separadas. Foi só quando os investigadores começaram a criar larvas em aquários e observaram as suas metamorfoses que foi possível identificar todas estas fases; no entanto, esta criação é difícil, uma vez que as diferentes larvas podem requerer condições diferentes e, por essa razão, ainda subsistem muitas espécies para as quais não se conhece completamente o ciclo de vida.

Taxonomia[editar | editar código-fonte]

A classificação científica dos crustáceos não está inteiramente estabelecida, uma vez que, devido ao grande número e diversidade de espécies e formas, as relações evolutivas não são claras.

A lista que segue trata como classes os diferentes grupos geralmente considerados como clades dos crustáceos e é a recomendada pela ITIS (Integrated Taxonomic Information System ou Sistema Integrado de Informação Taxonómica).

Subfilo Crustacea ou Crustaceomorpha


Alimentação[editar | editar código-fonte]

Dado que existem dezenas de milhares de espécies vivas de crustáceos com uma grande variedade de estilos de vida, segue-se que há uma grande diversidade em suas dietas e seus métodos para encontrar e processar alimentos[3], portanto esses animais exploraram praticamente todas as estratégias alimentares imagináveis[4]. Algumas espécies de crustáceos podem utilizar mais de uma estratégia de alimentação, e dependendo de variáveis ambientais - como a disponibilidade de alimentos -, pode dar preferência a alguns tipos de alimentos e estilos de alimentação em detrimento de outros[5].

Filtração[editar | editar código-fonte]

Animais filtradores extraem seus alimentos de partículas suspensas e utilizam principalmente no fitoplâncton para alimentação, e essa forma de alimentação é encontrada em quase todas as classes de animais representados no mar. Esses animais geralmente constituem um grupo bem definido, mas dificuldades podem ser encontradas na delimitação do grupo de filtradores de outros grupos de alimentação, principalmente dentro de formas muito pequenas. [5]

Matéria suspensa é uma importante fonte de alimento para crustáceos, e a alimentação por filtração é comum entre esses animais, especialmente entre os indivíduos menores[5]. Os mecanismos de filtração variam de acordo com o grupo, mas geralmente os apêndices da cabeça ou do tronco se diferenciam em órgãos filtradores, com cerdas de filtração plumosas que realizam a retenção de partículas.[5]

Classe Branchiopoda[editar | editar código-fonte]

A maioria dos Branchiopoda alimenta-se por filtração através de cerdas filtradoras nos apêndices tipo filopódio do tronco, que podem atuar tanto na alimentação quanto na natação. [6][7][8][9] Geralmente, esses apêndices do tronco são auto limpantes, com um mecanismo em que raspam partículas de comida contidas nas cerdas filtradoras.[5]

Subclasse Sarsostraca[editar | editar código-fonte]
Ordem Anostraca[editar | editar código-fonte]

Os crustáceos da ordem Anostraca possuem um tronco alongado com 20 ou mais segmentos, sendo que os 11-19 primeiros possuem apêndices.[5] Nesses animais, os espaços entre os apêndices do tronco formam câmaras de sucção. Quando o apêndice que forma a parede anterior dessa câmara se afasta do corpo, água é sugada para dentro dela. [5]

Partículas pequenas contidas na água passam através dos filtros, presentes nos enditos dos apêndices, onde duas fileiras de cerdas longas e plumosas realizam a filtração.[5]

Partículas grandes são retidas e acumuladas em um sulco na base dos apêndices.[5] Um fluxo de água entre as bases cria uma corrente em direção à boca, carregando essas partículas de comida concentradas. [7][8]

Subclasse Phyllopoda[editar | editar código-fonte]
Ordem Diplostraca[editar | editar código-fonte]

Subordem Cladocera

Nos cladóceros, ou pulgas d’água, os mecanismos de alimentação são muito mais variados e especializados, em comparação aos Anostraca. [5]

As principais características do processo de alimentação assemelham-se ao que acontece nos Anostraca: a água é retirada do meio para as câmaras de sucção e as partículas suspensas são filtradas pelas cerdas dos enditos.[7][10]

Nesse grupo, porém, é a carapaça que atua na formação de “câmaras de sucção”. Durante a abdução da água, os apêndices se movem lateralmente para que os exopoditos sejam pressionados contra a carapaça, o que fecha essas câmaras lateralmente. Durante a adução, os apêndices se movem medialmente.[5]

Nos cladóceros, é característico que as correntes inalante e exalante sejam separadas. Assim, a água é captada entre as carapaças na extremidade anterior e é movimentada dorsalmente, garantindo que a água contendo alimentos não se misture com a filtrada. As partículas retidas no filtro são passadas para a frente, em direção à boca. [7]

O processo de filtração em cladóceros geralmente é considerado como “peneiramento puro”, implicando que o tamanho da malha do filtro - isto é, a distância entre as cerdas ou os filamentos - determina o tamanho das partículas suspensas retidas. [11][12][13]

As telas filtradoras dos cladóceros são estruturas em formato de pente nos quarto e quinto par de apêndices torácicos basicamente formadas por uma fileira de cerdas longas, que têm ao longo de seu comprimento duas fileiras de cerdulas preenchem parcialmente os espaços entre as cerdas. A distância entre as cerdulas determina o tamanho da malha da tela. [5]

Essas fileiras de cerdulas são inseridas em um ângulo de 90 graus, ligam-se através de pequenos ganchos em suas extremidades aos cílios de cerdas adjacentes.[14][15][11][16] Nos ganchos de ligação, essas duas fileiras formam um ângulo de 90 graus novamente, de modo que todo o membro de filtragem é uma estrutura tridimensional. [5]

Os detalhes da estrutura e o tamanho da malha variam conforme espécie, idade do indivíduo, e ambiente. [17][16][12]

Classe Maxilopoda[editar | editar código-fonte]

Infraclasse Cirripedia[editar | editar código-fonte]

Todas as cracas são filtradoras marinhas que capturam plâncton por meio de um leque de cirros composto por seis pares de apêndices birremes chamados “patas de alimentação” ou cirros. [18][19][20] Cada ramo de um cirro possui muitos segmentos, e cada segmento contém de quatro a sete pares de cerdas uniformemente espaçadas.

A boca e o aparelho bucal desses animais ficam entre as bases do primeiro e segundo pares de cirros. Os dois (em Chtamalidae) ou três (em balanóides) primeiros pares de cirros são curtos e fortes, e os três ou quatro restantes são longos e finos e projetam-se fora do casco quando ativos. [19] A extensão e retirada rítmica dos cirros longos, o que forma uma “rede de varredura de cirros”, são considerados típicos de alimentação em cracas sésseis. [5]

A extensão do cirro durante a batida é lenta, pois ocorre devido ao preenchimento dos cirros por fluido corporal, pressionado através de força muscular, mas a contração é rápida, realizada por meio de músculos flexores que enrolam os cirros dentro da cavidade do manto. As partículas capturadas por esses cirros são raspadas por cerdas especiais no cirro mais próximo à cabeça, e finalmente passadas para a boca. [5]

Os cirros longos são usados principalmente na alimentação de partículas maiores, como o pequeno zooplâncton e grandes células fitoplanctônicas. Partículas muito pequenas podem, no entanto, ser filtradas pelos cirros curtos, adornados por cerdas, que são mantidos espalhados em um leque na entrada da cavidade do manto durante a alimentação. [5]

As correntes de água que passam pelos cirros curtos são produzidas em parte pela batida dos cirros longos, em parte pela ação de bombeamento dos movimentos do opérculo. A filtração de partículas menores e a captura de partículas pelos cirros longos ocorrem simultaneamente, mas a primeira pode também ocorrer sozinha pela movimentação do opérculo. [19]

Classe Copepoda[editar | editar código-fonte]

A maioria dos copépodes se alimenta de fitoplâncton e outras partículas em suspensão, formando assim um grande elo em muitas cadeias alimentares aquáticas. [5]

A alimentação predatória é provavelmente primária nos Copepoda, e a filtração é uma condição especializada especialmente desenvolvida dentro da ordem Calanoida. Poucos, se algum, copépodes dependem exclusivamente da filtração; mesmo filtradores especializados podem também alimentar-se por outros métodos, como raspando ou agarrando alimentos maiores. [21]

Na maioria dos copépodes filtradores, como no Calanus finmarchicus marinho, uma “câmara de filtração” [22] é formada entre a parede ventral do corpo e as segundas maxilas. Em Calanus spp., uma série de enditos se projeta do lado anterior da maxila; em cada um desses e nos três segmentos distais do endopodito há um número variável de cerdas longas, geralmente equipadas com duas fileiras de cerdulas. As cerdas plumosas formam as paredes laterais da câmara de filtração e as cerdulas formam a tela de filtragem. [5]

Quatro pares de apêndices (segunda antena, mandíbula, primeira maxila, maxilípedes) produzem a corrente de alimentação através do animal. [5]

Em algumas espécies, as segundas maxilas não atuam apenas como filtros  passivos - as cerdas das maxilas também podem ser alternadamente espalhadas para formar uma estrutura semelhante a uma cesta aberta e rapidamente unidas. As partículas retidas pelas cerdulas dessas cerdas são raspadas pelos enditos das primeiras maxilas e por longas cerdas especializadas dos maxilípedes, e depois passadas para a frente. Este complicado processo de alimentação pode variar de espécie para espécie, o que se reflete na morfologia das segundas maxilas. [5]

Os copépodes possuem quimiorreceptores bem desenvolvidos particularmente comuns nas partes da boca e nos apêndices de alimentação. [23] Esses animais podem detectar, portanto, células fitoplanctônicas na água, por exemplo, e redirecioná-las e capturá-las por movimentos assimétricos dos apêndices.[23]

Classe Ostracoda[editar | editar código-fonte]

Relativamente poucos ostrácodes são filtradores, mas mesmo assim a adaptação à filtração surgiu independentemente em três linhagens de ostrácodes: Cylindroleberidoidea, Platycopidea, e o gênero Vitjasiella de Podocopida. [24]

Nos Cylindroleberidoidea, a tela do filtro se estende da base alongada da maxila, e o pente de cerdas está no quinto membro; um sexto membro modificado contribui para a formação de uma “câmara de sucção” que cria um fluxo de água através da tela de filtração. [25]

Em Platycopidea (por exemplo, Cytherella abyssorum), existem telas de filtração tanto na base mandibular quanto na base das maxílulas; esta última também é provida de um pente de cerdas para raspar a tela mandibular, enquanto a maxílula é raspada por cerdas do quinto apêndice.[5]

Classe Malacostraca[editar | editar código-fonte]

Subclasse Phyllocardia[editar | editar código-fonte]
Ordem Leptostraca[editar | editar código-fonte]

Leptóstracos distinguem-se dos outros membros da classe Malacostraca por ter sete segmentos abdominais em vez de seis membros foliáceos e multirremes, um caráter compartilhado com os branquiópodes filtradores, embora essa característica seja de origem diferente. [26]

Em Nebalia bipes, um leptóstraco que vive no fundo de águas costeiras, os movimentos oscilatórios dos apêndices do tronco criam uma corrente de água que entra na extremidade anterior da carapaça e sai na posterior. [27]

Os endopoditos do tronco desses animais são, ao longo de suas bordas internas, providos de quatro fileiras de cerdas.  A primeira e a terceira fileiras são enganchadas, e as de membros seguintes intertravam, formando uma “parede de filtração” contínua em ambos os lados da “câmara de filtração” mediana entre os membros. A quarta fileira de cerdas raspa a parede de filtração, enquanto a segunda fileira empurra as partículas de alimento capturadas em direção ao sulco alimentar. [27]

Ordem Euphasiacea[editar | editar código-fonte]

Eufasiáceos nadam com grandes pleópodes cheios de cerdas, e a maioria desses animais é filtradora. Os seis a oito membros longos do cefalotórax formam uma “cesta de alimentação”, que funciona como uma estrutura de filtragem. [5]

Em Euphasia superba, os seis pares de pernas são superficialmente iguais, presos abaixo do tórax, com os endopoditos pressionados juntos medialmente para formar uma estrutura semelhante a uma quilha quando o animal está nadando rapidamente. [28]

De cada uma das pernas desse animal, cerdas de filtração alongadas, com comprimentos de duas a quatro vezes o diâmetro da perna, estendem-se em direção à boca. Essas cerdas estão próximas umas das outras perto da coxa e um pouco mais afastadas perto da extremidade distal do merus. [28]

Cerdulas de filtro secundárias surgem simetricamente de ambos os lados de cada cerda, como pínulas de uma pena, e uma matriz de cerdulas de filtração terciárias surge de cada uma delas, dispostas como farpas nas pínulas de uma pena. [28] Formando um ângulo aproximadamente reto com a fileira de cerdas de filtração e projetando-se medialmente ao longo do comprimento do ísquio-merus, estão duas a três fileiras de pentes de cerdas.[28]

Durante a alimentação, as pernas são afastadas da linha média em sincronia, criando uma cavidade que se enche de água devido ao gradiente de pressão. A malha formada pelas pernas e cerdas e a cavidade que elas envolvem produzem a cesta de alimentação. [28]

Os movimentos dos endopoditos são rápidos. À medida que a cesta de alimentação se expande lateralmente, a água é puxada para dentro da cesta pela frente. Uma vez dentro da cesta de alimentação, as partículas suspensas são retidas no filtro quando a água é comprimida lateralmente entre as cerdas.[28]

Durante a expansão da cesta, os exopoditos atuam como válvulas para impedir a entrada lateral de água, mas durante a compressão, se elevam e permitem a expulsão da água.[28]

As cerdas do pente soltam as partículas de alimento que ficam presas nas cerdas de filtração, e as pontas dessas cerdas escovam-nas para os palpos mandibulares. [28]

A filtração por “bombeamento por compressão” pode ocorrer em todos os eufasídeos que possuem apêndices torácicos, como os de E. superba, e que se alimentam de fitoplâncton. [28]

Ordem Decapoda[editar | editar código-fonte]

Dentro dos decápodes adultos, a alimentação por filtração parece estar restrita a alguns membros do infraordem Anomura (como os ermitões e os caranguejos de porcelana), alguns camarões da infraordem Thalassinidea e alguns caranguejos sésseis em corais. [29][30][31][32][33][34]

Caranguejos ermitões

O caranguejo ermitão Paguritta harmsi, que vive em tubos de poliquetas, possui adaptações únicas à filtração.[31]

As antenas de filtração desse caranguejo são seguradas perpendicularmente à corrente, e elas podem ser flexionadas e viradas para utilizar correntes provenientes de várias direções. [31]

Se a velocidade da corrente de água cessar, no entanto, o P. harmsi passa da filtração passiva para a ativa, e, neste modo, as antenas são continuamente movidas para frente e para trás. Quando uma partícula é capturada pelo filtro de cerdas, a antena é abruptamente flexionada para baixo, de modo que os terceiros maxillípedes possam escovar a partícula de alimento capturada e transportá-la até a boca.[31]

Caranguejos de porcelana

Esses animais são pequenos e possuem uma variedade de estratégias alimentares, embora filtração ativa seja o método dominante. [34]

No caranguejo de porcelana Porcellana longicornis, a filtração é realizada por dois leques relativamente grandes formados por cerdas dos terceiros maxilípedes. Os apêndices de alimentação são balançados lateralmente de forma alternada, desdobrando e espalhando as cerdas. Eles são então flexionados novamente enquanto se movem de volta para a linha média, e as partículas de alimento suspensas capturadas pelas cerdas são então escovadas pelos segundos maxilípedes e passadas para a boca.[29]

Os caranguejos de porcelana são capazes de alterar seu mecanismo de alimentação em relação ao regime de fluxo. Em baixas vazões, eles varrem a água ativamente com seus leques de coleta em forma de copo, mas a aceleração do fluxo de água induz a mudança da filtração de ativa para passiva. [32][35][36][37][38]

Camarões de fundo

Sem contar um breve estágio de larva pelágica, a maioria dos talassinídeos reside em uma toca durante toda a vida, e filtração e depositivoria são os dois principais mecanismos tróficos. [39]

O camarão Upogebia omissa, exemplo de talassinídeo filtrador, estica os dois primeiros pares de pereópodes em direção à abertura da toca para realizar a filtração, enquanto produz um fluxo de água em sua direção movendo seus pleópodes. As partículas suspensas neste fluxo de água são retidas no cesto de cerdas do primeiro e segundo pares de pereópodes. As cerdas do último par de pereópodes são limpas pelas cerdas do terceiro par de maxillípedes, que movem as partículas para a boca. [39]

No entanto, a capacidade de U. omissa e outras espécies de se alimentar também de depósitos, torna duvidoso se a filtração é o mecanismo de alimentação mais importante.[5]

O camarão talassinídeo C. subterranea, por exemplo, é primariamente depositívoro, mas também pode suplementar sua dieta por meio de filtração. Upogebia stella é principalmente um filtrador, mas pode se alimentar de depósitos ou por ressuspensão, [40] o que mostra que espécies como essas apresentam graus de plasticidade, de modo que diferentes modos de alimentação podem ser utilizados para explorar a fonte de alimento mais vantajosa disponível. [40]

Ordem Mysida[editar | editar código-fonte]

A maioria das espécies de Mysida são filtradoras de partículas menores e predadoras de massas alimentícias maiores. [41]

O misídeo Praunus flexuosus possui oito pares de apêndices torácicos, cada qual birreme com um exopodito e endopodito surgindo da base. Os endopoditos dos dois primeiros membros torácicos são modificados para alimentação. [42]

Nos misídeos Antarctomysis spp., Neomysis rayii, e Acanthomysis sculpta, apêndices de natação geram uma única corrente de água emergindo de cada lado do corpo do animal. Quando os endopoditos são estendidos na configuração de cesto aberto, a água flui para dentro do cesto e sai entre as pernas, onde grandes partículas são capturadas pelas cerdas para serem subsequentemente movidas medialmente e para a frente em direção à boca.[41]

Ordem Cumacea[editar | editar código-fonte]

Cumáceos são peracáridos marinhos que vivem enterrados na areia e lama. [43] O animal se move para trás usando as pernas e termina em posição inclinada com a cabeça acima da superfície do sedimento. [5]

A maioria dos cumáceos são depositívoros ou se alimentam de partículas finas, manipulando grãos de sedimentos com seus anexos bucais ou raspando as superfícies de partículas maiores (comedor de epistrato). No entanto, alguns cumáceos também são sugeridos como filtradores. [43]

Em Diastylis bradyi, o movimentos das maxilas faz com que o espaço entre elas e as maxílulas seja alternadamente aumentado e reduzido, o que cria uma uma “câmara de bombeamento”. [44]

Lateralmente, a lacuna entre a maxila e a maxila é sobreposta pela projeção do exito maxilar e, à medida que a água é puxada para dentro da câmara em expansão, essa válvula é puxada para dentro, evitando que a água entre na câmara. A única entrada de água para a câmara de bombeamento é através de uma tela de "cerdas filtradoras" que são dispostas paralelas umas às outras. [44]

Cada cerda possui uma fileira de cerdulas  regularmente espaçadas de cada lado, e elas são de tal comprimento que tocam as cerdulas da cerda vizinha. Partículas de comida suspensas na água que passa são depositadas nas cerdulas filtradoras, subsequentemente removidas e então passadas para a boca. [44]

Ordem Isopoda[editar | editar código-fonte]

Observações em vídeo e microscopia eletrônica forneceram evidências de alimentação por filtração no crustáceo isópodo de Sphaeroma terebrans. [45] Nesses animais, uma corrente de alimentação é gerada pelo rápido batimento dos pleópodes. Essa corrente passa posteriormente ao longo da superfície ventral do animal e através de três pares delgados anteriores de pereópodes que carregam as cerdas filtradoras ao longo da margem dorsal do ísquio e do merus. [45]

As cerdas filtradoras, adornadas por cerdulas, são orientadas perpendicularmente à corrente de água, e as partículas de alimento presas no filtro são removidas pelas partes bucais. [45]

O  isópode bentônico Antarcturus spinacoronatus, representante  da família antártica Arcturidae, é um animal de locomoção pouco eficaz e, portanto, modo de vida quase séssil. [46]

Quando há suspensão de plâncton, os isópodos esticam as pernas filtrantes (pereópodos 2-4), as longas cerdas se espalham e, enquanto não houver corrente, as pernas se movem vigorosamente. [46]

Cada perna filtrante é sucessivamente dobrada dorsalmente, puxada através da água com cerdas filtradoras espalhadas - o que é realizado através do aumento da pressão sanguínea, que age como mecanismo hidráulico -, e então movimentada em direção à boca, onde os movimentos de limpeza dos pereópodes 1 e palpos maxilares concentram as partículas de alimento capturadas, que são transferidas para a boca.[46]

Quando não há mais partículas na água, os movimentos cessam e os isópodos permanecem na posição de repouso, com o cesto de cerdas filtrantes esticado ou dobrado. No entanto, quando é produzida uma corrente fraca e constante, os isópodes orientam o cesto transversalmente à corrente. [46]

Esses animais ingerem quase qualquer partícula que adere às longas cerdas de filtração.[5]

Ordem Amphipoda[editar | editar código-fonte]

A maioria dos anfípodes são detritívoros, mas alguns são filtradores com diferentes apêndices adaptados a atuar como filtros.[5]

O anfípode cavador Corophium volutator habita os sedimentos rasos e macios das águas costeiras. Esse animal pode se alimentar de matéria orgânica na superfície do sedimento (depositívoro) ou de partículas suspensas (filtrador), trazendo esses alimentos para dentro de seu tubo em forma de U. [47][48]

Quando a concentração do fitoplâncton é suficientemente alta, o C. volutator alimenta-se por filtração, usando longas cerdas no segundo par de gnatópodes para reter partículas suspensas trazidas para dentro do tubo pela corrente gerada pelos pleópodes. [48][47]

Uma fileira dupla de cerdas plumosas - adornadas por cerdulas - no merus forma uma cesta de filtro em forma de V que é espalhada entre a parede do animal e do tubo; periodicamente, o par de segundos gnatópodes move-se medialmente, enquanto pentes no carpo dos primeiros gnatópodes capturam partículas da cesta de filtro e as levam até a boca. [49]

Em anfípodes caprelídeos, o termo “cerdas natatórias” tem sido utilizado para denominar as cerdas longas, plumosas, pareadas, surgindo em um padrão V da superfície ventral das antenas.[50] No entanto, além da locomoção, as cerdas plumosas têm sido atribuídas à captação de partículas durante a alimentação por filtração, o que parece ser sua principal função. [5]

Assim, quando as correntes são fortes o suficiente, algumas espécies de caprelídeos filtram as correntes de água passivamente, mantendo uma postura ereta com a superfície ventral orientada para a corrente.[50]

Em águas de fluxo mais lento, no entanto, a alimentação por filtração é mantida por meio de uma corrente auto-gerada, seja por um movimento de balanço de todo o animal que puxa a antena através da água, ou batendo os maxilípedes de modo que uma corrente anterodorsal é produzida através dos filtros antenais. [50]

Muitos gamarídeos estendem a antena para a corrente do ambiente como uma rede de filtração.[5]

Nos gêneros Ampelisca e Haploops, por exemplo, a posição de alimentação do animal é pendurado de cabeça para baixo na boca do tubo, agarrando-se à borda com suas pernas especializadas. Por meio da antena estendida, o animal captura partículas suspensas da água, ou as antenas são usadas para coletar detritos na superfície do sedimento. [51] Tanto o detrito coletado na superfície como o material suspenso filtrado nas antenas são raspados por meio dos gnatópodes e ingeridos. [51]

Quando a corrente de água é lenta ou ausente, as antenas são movimentadas vigorosamente para gerar movimento que traga partículas suspensas para elas, mas quando a velocidade da corrente é suficientemente alta, o animal adota uma posição com a cabeça afastada da corrente e as antenas estendidas para a frente. [51]

Depositivoria[editar | editar código-fonte]

A lama é uma das substâncias mais abundantes em meios aquáticos, e é encontrada tanto no solo quanto dissolvida na água. Ela é capaz de reter umidade mesmo em lugares onde não há imersão completa, como ambientes pantanosos ou lugares com águas mais lentas, e partículas orgânicas se instalam na água parada desses locais. Por essa razão, sedimentos lamosos servem como fonte de alimento para um número incontável de animais em quase todos os filos. [5]

A lama é frequentemente ingerida de forma direta, mas também pode ser filtrada, ou “peneirada”, por animais que se alimentam dela, e selecionam assim partículas de maior qualidade nutricional. [5]

Substratos lamosos podem apresentar composições diversas e complexas, o que inclui grãos minerais indigestos e componentes orgânicos que podem variar desde organismos celulares - como bactérias - a resíduos de organismos multicelulares vivos, exoesqueletos espalhados e agregações de grandes moléculas orgânicas.[5]

Os crustáceos são adaptados a essa situação e possuem estratégias para lidar com as complexidades dessa fonte de alimento. Alguns, por se alimentarem de depósito maiores, podem lidar com grandes quantidades de partículas de sedimento de uma só vez, enquanto animais menores tendem a coletar partículas individuais do complexo mineral orgânico ou das superfícies de sedimento.

Bactérias geralmente são abundantes em lama úmida. A maioria delas se encontra associada a superfície dos grãos minerais ou associada ao material orgânico. [52] Em água rasa, seja doce ou marinha, as próximas partículas de potencial alimento mais abundantes nos sedimentos são as diatomáceas. Naturalmente, quanto mais raso o sedimento, maior a abundância de diatomáceas. [53]

Lama marinha também contém um número moderado de protistas e metazoários de tamanho meiofaunal, como nemátodes, copépodes, ostrácodes, larvas náuplias e larvas de vermes, juntamente com bivalves e caracóis. Todos estes podem ser ingeridos por organismos forrageando na lama ou engolindo grandes bolos de lama durante o ato depositívoro. [5]

Como a lama contém uma mistura diversa de partículas indigestíveis, grande parte da matéria orgânica no sedimento que pode ser medida como carbono orgânico e nitrogênio total - ou matéria orgânica total - não é digerível por quase todos os depositívoros. [54] Além disso, há uma diminuição constante em C e N orgânicos com profundidade no sedimento devido à degradação pela atividade bacteriana e outros fatores diagenéticos. [55]

Dessa forma, depositívoros, pelo menos em águas rasas, provavelmente obtêm diferentes componentes de suas necessidades nutricionais a partir de uma variedade de fontes de alimento. [56]

Depositívoros são geralmente classificados de acordo com a fonte das partículas de sedimentos que ingerem. Isto é, se eles estão se alimentando de depósitos superficiais (depositívoro de superfície) ou em material que foi enterrado por muito tempo (depositívoro subterrâneo). Obviamente, há espécies que podem alimentar-se das duas formas. [5]

Depósitos de superfície contêm material relativamente fresco, muitas vezes com células intactas ou ainda vivas, enquanto o material de subsolo normalmente consiste de partículas orgânicas decompostas e degradadas de baixo valor nutricional. [5]

Ainda assim, há animais que trazem material de superfície, como fragmentos de vegetais marinhos, para sua toca, de modo que a decomposição anaeróbica pode aumentar a capacidade nutricional. [5]

Ainda dentro desses dois grupos de depositívoros, os animais possuem diferentes estratégias de alimentação. Alguns, por exemplo, se alimentam de pequenas partículas na superfície do sedimento, usando mecanismos de captura semelhantes aos dos suspensívoros. Outros usam suas partes bucais para raspar revestimentos orgânicos ou células vivas da superfície dos sedimentos. [5]

Muitas ordens ou famílias de crustáceos, tais como cefalocarídeos, mistacocarídeos, isópodes, tanaidáceos, anfípodes e decápodes contêm espécies depositívoras, seja por se alimentar de sedimentos à granel, selecionando partículas individualmente ou por grandes bolos de lama. [5]

Classe Copepoda[editar | editar código-fonte]

Ordem Harpacticoida[editar | editar código-fonte]

Os membros dominantes da meiofauna entre os crustáceos são os copépodes harpacticóides. A pastagem de microalgas foi observada em várias espécies, [57][58], sendo as diatomáceas pelágicas ou bentônicas o alimento preferido. Harpacticóides que habitam lama coletam material da superfície dos sedimentos ou giram esferas de sedimento sobre os apêndices da boca, aparentemente selecionando as partículas para ingestão, enquanto os que moram na areia raspam a superfície dos grãos de areia em busca de material ingerível.[59]

Classe Malacostraca[editar | editar código-fonte]

Ordem Amphipoda[editar | editar código-fonte]

Espécies de anfípodes podem obter alimento da superfície do sedimento de duas formas principais: capturando material ressuspenso quando há turbulência suficiente para mover para as partículas para o nível bentônico; ou, quando as condições são calmas, varrendo a superfície do sedimento com suas antenas.[5]

A maioria dos anfípodes que vivem em tocas subterrâneas usam seus gnatópodes para lidar com grandes quantidades de lama, da qual extraem parte para sua ingestão. Por exemplo, Maera loveni usa seus grandes gnatópodes para escavar grandes bolos de lama da parede da toca, que é então movida para os aparelhos bucais, onde ocorre seleção de partículas e ingestão. [60] Comportamento semelhante foi observado para Casco bigelowi: quando jovens, na toca, a mãe adiciona água ao bolo de lama, de modo a facilitar o manuseio e ingestão. [61]

Ordem Decapoda[editar | editar código-fonte]

Os maiores grupos de depositívoros de superfície entre esses animais são os caranguejos violinistas e os caranguejos borbulhadores. Desses, vale destacar duas espécies, Uca pugilator e Scopimera globosa. Os Uca pugilator tendem a viver em lodo ou areia rica em detritos, geralmente associadas a habitats de grama ou manguezais, enquanto os Scopimera globosa habitam planícies de areia entre-marés.[5]

O caranguejo violinista (Uca pugilator) ingere muitos tipos de partículas, mas seu aparato oral pode ser saturado por altas densidades de partículas pequenas.[62] Nesses animais parece haver ingestão eficiente de ciliados e grãos de areia com bactérias, e o mecanismo de seleção de alimento é implementado com cerdas no segundo maxilípede que agem como colheres. [63] Como as partes bucais dos caranguejos são adornadas por cerdas quimiossensoriais, é esperado um desenvolvimento de respostas gustativas, embora isso raramente seja testado experimentalmente. [64]

Os caranguejos-borbulhadores de areia, como o Scopimera inflata, usam seus quelípedes, apêndices terminados com garras em forma de pinças, para mover pedaços de areia da superfície para seus aparelhos bucais.[5] A raspagem do substrato forma uma vala rasa que se estende por trás do animal até a entrada da toca.[5]

Esse caranguejo utiliza o aparelho bucal para manipular a areia de forma circular, extraindo partículas orgânicas e deixando para trás grãos de areia indigestos, que são então organizados em uma pelota esférica posteriormente depositada na superfície plana da areia.[65]

Os caranguejos-soldados também alimentam-se de sedimentos, em planícies de maré tropicais. Eles podem se alimentar de sedimentos subsuperficiais dentro de suas tocas ou de sedimentos de superfície a partir de um túnel superficial. [5]

Indivíduos grandes também se alimentam em planícies baixas de areia entremarés.[66] Ao comparar a concentração de ácidos graxos em sedimentos superficiais e pelotas fecais, pode-se determinar que esses animais se alimentam principalmente de bactérias, diatomáceas e detritos de macroalgas. [67]

Infraordem Thalassinidea[editar | editar código-fonte]

Corruptos, ou camarões-fantasmas, da ordem Thalassinidea, constroem tocas em sedimentos ou em escombros de coral comumente complexos. A forma da toca desses animais pode ser usada para prever se o morador se alimenta de depósito ou de suspensão. Griffis e Suchanek (1991).

Quando se alimentam de depósitos, os talassinídeos têm duas estratégias básicas: [68]

Uma é escavar sedimentos das paredes da toca usando o primeiro, o segundo e, ocasionalmente, o terceiro pereópode. A lama que é solta por esses apêndices é transferida para o terceiro e segundo maxilípedes, onde é empurrada para a boca. O sedimento que foi manuseado e rejeitado é mantido no cesto formado pelos terceiros maxilípedes e então movido para outro local na toca, ou para a superfície da toca por uma corrente gerada por um pleópode.[68]

Outra estratégia é levar o material da superfície do sedimento para a toca, ou remover partículas da parede da toca e usar os pleópodes para montar uma corrente direcionada posteriormente. Nesse caso, os quelípedes e os segundos pereópodes podem ser pressionados contra a parede da toca, formando um cesto de filtragem eficaz. As partículas são então capturadas nas cerdas dos segundos pereópodes e transferidas para a boca pelos movimentos ocasionais de limpeza dos terceiros maxilípedes. Essa estratégia pode ser usada para se alimentar de suspensão principalmente quando a concentração de partículas na água sobrejacente é alta.[68]

Detritivoria[editar | editar código-fonte]

Detritos são matéria orgânica não viva, seja de origem animal, vegetal, fúngica ou microbiana, portanto consiste em material que será degradado pela ação conjunta de micróbios e animais detritívoros.[69]

Crustáceos de várias ordens são considerados detritívoros, ao menos parcialmente, e esses animais habitam diversos habitats.[5]Embora detritos possam ter origens orgânicas diversas, crustáceos considerados detritívoros são aqueles que alimentam-se principalmente de detritos vegetais, pois os necrófagos,  que alimentam-se de animais mortos, apresentam maior correlação com predadores carnívoros.[5]

Crustáceos que se alimentam de detritos vegetais exibem algumas semelhanças com herbívoros que se alimentam de tecido vivo fotossinteticamente ativo. Com o passar do tempo, no entanto, os detritos sofrem redução de nutrientes - através da lixiviação dos compostos solúveis em água e degradação microbiana - e são enriquecidos em compostos que são agregados pelo meio, como minerais presentes ao longo do leito de um rio. Alimentar-se de matéria detrítica, portanto, requer a capacidade de manusear e utilizar uma fonte de alimento de baixo valor nutritivo, que pode ser rica em compostos resistentes à ação química e física. [5]

A microbiota presente nos detritos, porém, é importante para processar o material, promovendo sua palatabilidade e digestibilidade, além de servir como fonte alimentar suplementar. Por essa razão, através da alimentação consistente em plantas e animais (vivos ou mortos), muitos crustáceos detritívoros devem ser considerados onívoros.[5]

Há certa variação na origem dos detritos preferencialmente utilizados como alimento em diferentes grupos de crustáceos. Os crustáceos detritívoros aquáticos, por exemplo, alimentam-se principalmente de células de algas mortas ou de talos; já os (semi) terrestres fazem uso de macrófitas afundadas ou matéria morta de origem vegetal vascular. De forma geral, porém, crustáceos detritívoros preferem se alimentar de matéria detrítica densamente colonizada por micróbios.[5]

Esses animais possuem diversas adaptações que os possibilitam a alimentar-se por depositivoria. A captação de matéria detrítica fragmentada e pequena, por exemplo, requer apêndices especializados que filtrem partículas da coluna de água ou fragmentem detritos em geral. Estruturas mastigatórias do sistema digestivo também podem contribuir para a fragmentação do alimento. [5]

A anatomia e a fisiologia do intestino também são importantes para a utilização eficiente dos escassos nutrientes, ou para reter o bolo alimentar dentro do intestino por tempo prolongado, levando assim a uma maior absorção. A microbiota intestinal, seja transitória ou residente, também pode contribuir para os processos digestivos ou compensar a baixa quantidade de nutrientes disponíveis.[5]

Predação e necrofagia[editar | editar código-fonte]

Predadores e necrófagos constituem uma porção significativa de todos os crustáceos e são encontrados entre os principais táxons desse grupo[5].  Por mais importantes que sejam esses estilos de alimentação, poucos crustáceos predadores e necrófagos  são especializados em um tipo de alimentação específico. Geralmente, esses animais empregam métodos variáveis para obter alimento.[5]

Tanto crustáceos predadores quanto necrófagos ocupam diversos habitats diferentes, de terrestres a lacustres, cavernas submarinas e diferentes níveis da coluna d’água.[5]

A predação é proeminente entre os decápodes, que incluem crustáceos relativamente grandes, como camarões, caranguejos e lagostas. A necrofagia também é comum nesse grupo, mas possui muitos representantes isópodos e anfípodes.[5] Por essa razão, organismos que ingerem lama devem lidar com o fato de que muito do que consomem é indigesto e deve passar pelo sistema digestivo sem causar danos ou comprometer a absorção de nutrientes. [5]

Dieta[editar | editar código-fonte]

A dieta dos crustáceos predadores é diversificada,  e abrange presas de muitos táxons marinhos diferentes.[5] Essa dieta é afetada por diversos fatores, como morfologia, tamanho, idade, habitat e distribuição tanto de predadores quanto de presas,  assim como a lucratividade, palatabilidade e digestibilidade de presas, entre outras variáveis. [70] [71]

Muitos táxons de crustáceos consistem em organismos com apenas alguns milímetros de comprimento, o que limita suas possíveis presas. [5] Pequenos crustáceos predadores, como copépodes, ostrácodes, anfípodes e isópodes tendem a se alimentar de presas planctônicas, como protozoários, rotíferos, pequenos crustáceos, insetos, girinos e invertebrados de corpo mole.[5]

Os crustáceos predadores de tamanho médio, encontrados entre os estomatótopos, os lofogastrídeos, os notostraca e os eufasídeos podem atacar mais facilmente pequenos peixes, moluscos, cnidários e outros crustáceos.[5]

Grandes predadores, como muitos decápodos, se alimentam de caranguejos, gastrópodes, bivalves e peixes.[5]

Diferenças na dieta de acordo com o tamanho também podem ocorrer durante o desenvolvimento ontogenético dos crustáceos. Um exemplo disso é o camarão-rosa Penaeus duorarum, que ataca organismos cada vez maiores à medida que cresce, começando com pequenos crustáceos e depois diversificando-se em crustáceos maiores, além de moluscos e poliquetas. [72] Outros crustáceos podem mudar completamente os estilos de alimentação durante sua ontogenia, como o copépode Cyclops bicuspidatus thomasi, que é herbívoro na fase de náuplia, mas utiliza predominantemente a predação em fases posteriores da vida. [73]

Os crustáceos necrófagos desenvolveram um estilo de vida no qual uma parte importante de seu suprimento de energia vem de animais mortos que aparecem esporadicamente e imprevisivelmente. [74][75]

Os necrófagos de águas profundas são especialmente dependentes de quedas de alimentos, pois os oceanos profundos recebem poucos insumos de matéria orgânica concentrada e rica em energia.[5] Assim, quando a comida cai, ocorre um frenesi entre esses animais, que chegam rapidamente e alcançam-na no pico de abundância em um enxame ao redor da carcaça, sendo que começam a abandoná-la à medida em que seu conteúdo se torna menos lucrativo.[5]

Os necrófagos podem ter preferências por certas partes do corpo de uma carcaça. Anfípodes, por exemplo, foram registrados consumindo preferencialmente fibra muscular de cetáceos, em vez de tecido conjuntivo, pele e gordura. [76]

Crustáceos necrófagos são majoritariamente generalistas por necessidade. A maioria prefere carcaças frescas, que fornecem nutrientes de maior qualidade - já que quanto mais velha a carniça, mais provável é que suas partes mais ricas em energia já tenham sido consumidas e que ela contenha bactérias. [77]

Mesmo assim, se uma carcaça não for fresca ou tiver sido invadida por bactérias, a maioria dos crustáceos necrófagos ainda se alimentam dela: carcaças de baleias podem sustentar comunidades bentônicas por anos e, apesar de não serem frescas, ainda atraem os crustáceos. [78]

Além de se alimentar de outras espécies, alguns crustáceos predadores se alimentam de sua própria espécie. O canibalismo é um comportamento comum entre esses animais. [79] As taxas de canibalismo variam de acordo com vários fatores, como disponibilidade de alimentos alternativos, tamanho e fome do predador canibal; e tamanho e sexo de suas presas em potencial.[79]

Forrageamento e busca de alimento[editar | editar código-fonte]

Quimio, mecano e fotorrecepção permitem que os crustáceos detectem os itens alimentares, mas além disso, os crustáceos usam várias estratégias solitárias de forrageamento e busca de alimentos.[5]

Manipulação da presa[editar | editar código-fonte]

A maioria dos crustáceos mata suas presas através de meios mecânicos, como esmagamento ou suas variantes [80], e esses animais aparentemente não possuem toxinas que poderiam ser usadas para imobilizar as presas, sendo que a única exceção para isso possivelmente seja os remípedes.

Moluscos de concha grossa são um item comum das presas dos decápodes, e muitos caranguejos têm garras fortes que quebram eficientemente essas conchas. Isto é possibilitado por garras pesadas que podem abrir as conchas, assim como pela alta força de esmagamento do músculo da garra, que é uma das maiores forças relatadas no mundo natural, alcançando até 800 N. [81]

O esmagamento é o método de imobilização preferencial pela sua rapidez, mas só é eficaz em presas pequenas em relação ao tamanho do corpo do caranguejo. Para presas maiores, os caranguejos tendem a lascar e perfurar a casca, o que é muito mais intensivo energeticamente. [82]

Diferentes estratégias de imobilização são usadas entre outros táxons de crustáceos. Os estomatópodes têm apêndices raptoriais únicos que eles usam para esmagar, lançar e subjugar suas presas [83] [84] com seus apêndices atingindo velocidades que são das mais altas do reino animal. [85]

Os copépodos que realizam emboscadas matam suas presas do zooplâncton usando um espetacular ataque de salto rápido que deixa a presa sem tempo para escapar. [86][87]

Os remípedes, uma pequena classe de crustáceos, têm três pares de membros cefálicos raptoriais preensíveis e uma presa em suas maxílulas que pode conter veneno ou uma substância digestiva que é injetada na presa. A presença de veneno, porém, ainda não foi confirmada e seria uma novidade em crustáceos predadores. [88][89]

Os caranguejos abrem presas que possuem carapaças esmagando-as até que sejam expostas ou abrindo suas conchas com o uso de suas quelas. Para presas menores e desprotegidas, o tempo de manuseio é relativamente curto e requer simplesmente mover todo o item da presa para a boca. [90][80]

Decápodes maiores utilizam táticas de esmagamento quase que exclusivamente, enquanto caranguejos menores usam uma variedade maior de métodos, incluindo táticas de “perímetro”, como cortar as bordas laterais das conchas de mexilhão. [91]

Muitas carcaças requerem quase nenhum manejo por crustáceos necrófagos devido a lesão, decomposição ou alimentação por outros animais, mas eles são equipados com partes bucais que cortam e trituram com eficiência para lidar com possíveis obstáculos. [92]

Ingestão[editar | editar código-fonte]

Em termos gerais, a ingestão de crustáceos envolve os apêndices modificados torácicos e cefálicos. [5] Especificamente, os maxilípedes, maxilas, mandíbulas, lábio e, às vezes, as antenas, estão envolvidos. [93]

Quando as partes da presa estão próximas do aparelho bucal, predadores como os caranguejos decápodes rasgam-nas com suas mandíbulas e usam os terceiros maxilípedes para executar uma ação de puxar. Depois que os predadores removem um pedaço de tecido, eles usam os maxilípedes 1 e as maxilas 2 para posicionar a parcela de alimentos na frente de sua abertura bucal. [94] Após a ingestão, ocorre mais mastigação no moinho gástrico. [5]

Em crustáceos necrófagos, a ingestão de alimentos acontece de forma rápida e eficiente. Anfípodes lisianassídeos do fundo do mar têm partes bucais cortantes e grandes entranhas. Isso permite que eles passem grandes pedaços de comida através do esôfago sem triturá-los, explorando rapidamente quedas efêmeras de alimentos [95][92] Paralicella sp. pode expandir o volume da sua parede corporal de três a cinco vezes como resultado de ingestão em queda de alimentos. [96]

Registros fósseis de crustáceos[editar | editar código-fonte]

Os registos mais antigos de fósseis de crustáceos parecem ser de cracas do período Cambriano (543 a 490 milhões de anos), portanto, de entre os animais mais antigos que se conhecem. As lagostas e caranguejos, com os seus exosqueletos calcificados deixaram boas marcas das eras Mesozoica e Cenozoica. A “Camada de Lagostas” da ilha de Wight, na Inglaterra é famosa pelas formas bem conservadas de lagostas do período Cretácico. Na Alemanha, também se encontram bons fósseis de crustáceos do período Jurássico no calcário de Solnhofen.

O grupo com registo fóssil mais completo entre os crustáceos é o grupo Ostracoda, pequenos animais com uma carapaça similar a dos moluscos bivalves. Os mais antigos pertencem ao período Cambriano, aparecem mais diversificados no Ordoviciano e são especialmente abundantes no Silúrico. Em certos casos, os depósitos destas “conchas” formam um tipo de rocha [97]por vezes usada em construção: a coquina. Os penhascos brancos de Dover, na Inglaterra, são um bom exemplo desta rocha.

Culinária[editar | editar código-fonte]

Os Crustáceos são Utilizados pela Culinária Mediterrânea, Sino Japonesa, Tailandesa e também na Brasileira. No Brasil o consumo de camarão, siri, e caranguejo é mais frequente, enquanto que em Portugal e Espanha o consumo de percebes e lagostas é maior.

Galeria[editar | editar código-fonte]

Referências

  1. a b RUPPERT, Edward E. BARNES, Robert D. Zoologia dos invertebrados. 6ed. São Paulo: Roca, 1996.
  2. Madeira, Alda Maria Backx Noronha “Introdução ao estudo dos artrópodes” notas do curso BMP-0222 – Introdução à Parasitologia Veterinária no site do Instituto de Ciências Biomédicas da Universidade de São Paulo, Brasil Arquivado em 10 de dezembro de 2013, no Wayback Machine. acessado a 2 de julho de 2009
  3. Schram, F. R. (2013). Natural history of the Crustacea, Vol. 1: functional morphology and diversity. New York: Oxford University Press. pp. 1–33
  4. Brusca, R.C. & Brusca, G. J, 2007. Invertebrados. Segunda edição. Editora Guanabara-Koogan, Rio de Janeiro. 968 pp.
  5. a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl Thiel, M. & Watling, L. (2015). Natural history of the Crustacea, Vol. 2: Life Style and Feeding Biology. New York: Oxford University Press. pp. 418–556
  6. Cannon, H.G. 1928. On the feeding mechanism of the fairy shrimp, Chirocephalus diaphanus Prévost. Transactions of the Royal Society of Edinburgh 55:807–822.
  7. a b c d Cannon, H.G. 1933. On the feeding mechanisms of the Branchiopoda. Philosophical Transactions of the Royal Society B 222:267–352.
  8. a b Barlow, D.I., and M.A. Sleigh. 1980. The propulsion and use of water currents for swimming and feeding in larval and adult Artemia. Pages 61–73 in G. Persoone, P. Sorgeloos, O. Roels, and E. Jaspers, editors. The brine shrimp Artemia. Universa Press, Wetteren, Belgium.
  9. Fryer, G. 1983. Functional ontogenetic changes in Branchinecta ferox (Milne-Edwards) (Crustacea: Anostraca).Philosophical Transactions of the Royal Society of London B 303:229–343.
  10. Fryer, G. 1987. The feeding mechanisms of Daphniidae (Crustacea: Cladocera): recent suggestions and neglected considerations. Journal of Plankton Research 9:419–432.
  11. a b Brendelberger, H., and W. Geller. 1985. Variability of filter structures in eight Daphnia species: mesh sizes and filtering areas. Journal of Plankton Research 7:473–486.
  12. a b Gophen, M., and W. Geller. 1984. Filter mesh size and food particle uptake by Daphnia. Oecologia (Berlin) 64:408–412.
  13. Brendelberger, H. 1991. Filter mesh size of cladocerans predicts retention efficiency for bacteria. Limnology and Oceanography 36:884–894.
  14. Watts, E., and M. Petri. 1981. A scanning electron microscope study of the thoracic appendages of Daphnia magna Straus. Journal of Natural History 15:463–473.
  15. Gerritsen, J., and K.G. Porter. 1982. The role of surface chemistry in filter feeding by zooplankton. Science 216:1225–1227.
  16. a b Bednarska, A. 2006. Adaptive changes in morphology of Daphnia filter appendages in response to food stress.Polish Journal of Ecology 54:663–668
  17. Machacek, J. 1998. What can we learn from Daphnia filtering screens? Journal of Plankton Research 20:1645–1650.
  18. Southward, A.J. 1955. Feeding of barnacles. Nature 175:1124–1125
  19. a b c Crisp, D.J., and A.J. Southward. 1961. Different types of cirral activity of barnacles. Philosophical Transactions of the Royal Society 243:271–307.
  20. Chan, B.K.K., A. Garm, and J.T. Høeg. 2008. Setal morphology and cirral setation of thoracian barnacle cirri: adaptations and implications for thoracian evolution. Journal of Zoology 275:294–306
  21. Jørgensen, C.B. 1966. Biology of suspension feeding. Pergamon Press, Oxford, U.K
  22. Cannon, H.G. 1929. On the feeding mechanism of the copepods, Calanus finmarchicus and Diaptomus gracilis. The British Journal of Experimental Biology 6:131–144.
  23. a b Friedman, M.M., and J.R. Strickler. 1975. Chemoreceptors and feeding in calanoid copepods (Arthropoda: Crustacea). Proceedings of the Natural Academy of Sciences USA 72:4185–4188
  24. Schornikov, E.I. 1976. Adaptation pathways of Ostracoda to seistonophagy. Abh. Verh. natuurwiss. Ver. Hamburg (NF). 18:247–257
  25. Horne, D.J. 2005. Homology and homoeomorphy in ostracod limbs. Hydrobiologia 538:55–80.
  26. Spears, T., and L.G. Abele. 1999. Phylogenetic relationships of crustaceans with foliaceous limbs: an 18S rDNA study of Branchiopoda, Cephalocardia, and Phyllocarida. Journal of Crustacean Biology 19:825–843
  27. a b Cannon, H.G. 1927. On the feeding mechanism of Nebalia bipes. Transactions of the Royal Society of Edinburgh 55:355–369.
  28. a b c d e f g h i Hamner, W.M. 1988. Biomechanics of filter feeding in the Antarctic krill Euphausia superba: review of past work and new observations. Journal of Crustacean Biology 8:149–163
  29. a b Nicol, E.A.T. 1932. The feeding habits of the Galatheidea. Journal of Marine Biology Association of the U.K. 18:87–106.
  30. Gerlach, S.A., D.K. Ekstrøm, and P.B. Eckardt. 1976. Filter feeding in the hermit crab. Oecologia 24:257–264.
  31. a b c d Schuhmacher, H. 1977. A hermit crab, sessile on corals, exclusively feeds by feathered antennae. Oecologia (Berl.) 27:371–374.
  32. a b Trager, G.C., D. Coughlin, A. Genin, Y. Achituv, and A. Gangopadhyay. 1992. Foraging to the rhythm of ocean waves: porcelain crabs and barnacles synchronize motions with flow oscillations. Journal of Experimental Marine Biology and Ecology 164:73–86
  33. Stamhuis, E.J., and J.J. Videler. 1998a. Burrow ventilation in the tube-dwelling shrimp Callianassa subterranea (Decapoda: Thalassinidea). I. Morphology and motion of the pleopods, uropods and telson. Journal of Experimental Biology 201:2151–2158
  34. a b Kropp, R.K. 1981. Additional porcelain crab feeding methods (Decapoda, Porcellanidae). Crustaceana 40:307–310.
  35. Achituv, Y., and M.L. Pedrotti. 1999. Costs and gains of porcelain crab suspension feeding in different flow conditions. Marine Ecology Progress Series 184:161–169.
  36. Miller, D.C., M.J. Bock, and E.J. Turner. 1992. Deposit and suspension feeding in oscillatory flows and sediment fluxes. Journal of Marine Research 50:489–520.
  37. Trager, G., and A. Genin. 1993. Flow velocity induces a switch from active to passive suspension feeding in a porcelain crab Petrolisthes leptocheles (Heller). Biological Bulletin 185:20–27.
  38. Valdivia, N., and W. Stotz. 2006. Feeding behavior of the porcellanid crab Allopetrolisthes spinifrons, symbiont of the sea anemone Phymactis papillosa. Journal of Crustacean Biology 26:308–315.
  39. a b Coelho, V.R., R.A. Cooper, and S.A. Rodrigues. 2000. Burrow morphology and behavior of the mud shrimp Upogebia omissa (Decapoda: Thalassinidea: Upogebiidae). Marine Ecology Progress Series 2000:229–240.
  40. a b Nickell, L.A., and R.J.A. Atkinson. 1995. Functional morphology of burrows and trophic modes of three thalassinidean shrimp species, and a new approach to the classification of thalassinidean burrow morphology. Marine Ecology Progress Series 128:181–197.
  41. a b Schabes, M., and W. Hamner. 1992. Mysid locomotion and feeding: kinematics and water-flow patterns of Antarctomysis sp., Acanthonysis sculpta, and Neomysis rayii. Journal of Crustacean Biology 12:1–10.
  42. Laverack, M.S., D.M. Neil., and R.M. Robertson. 1977. Metachronal exopodite beating in the mysid Praunus flexuosus: a quantitative analysis. Proceedings of the Royal Society of London B 198:139–154.
  43. a b Wieser, W. 1956. Factors influencing the choice of substratum in Cumella vulgaris Hart (Crustacea, Cumacea). Limnology and Oceanography 1:274–285
  44. a b c Dennell, R. 1934. The feeding mechanism of the cumacean crustacean Diastylis bradyi. Transactions of the Royal Society of Edinburgh 58:125–142.
  45. a b c Aung S., O. Bellwood, and C.G. Alexander. 2002. Evidence for filter-feeding by the wood-boring isopod, Sphaeroma terebrans (Crustacea: Peracarida). Journal of Zoology (London) 256:463–471.
  46. a b c d Wägele, J.W. 1987. The feeding mechanism of Antarcturus and a redescription of A. spinacoronatus Schultz, 1978 (Crustacea: Isopoda: Valvifera). Philosophical Transactions of the Royal Society of London B 316:429–458.
  47. a b Riisgård, H.U., and P. Schotge. 2007. Surface deposit-feeding versus filter-feeding in the amphipod Corophium volutator. Marine Biology Research 3:421–427
  48. a b Meadows, P.S., and A. Reid. 1966. The behaviour of Corophium volutator (Crustacea: Amphipoda). Journal of Zoology 150:387–399
  49. Miller, D.C. 1984. Mechanical post-capture particle selection by suspension- and deposit-feeding Corophium. Journal of Experimental Marine Biology and Ecology 82:59–76.
  50. a b c Caine, E.A. 1979. Functions of swimming setae within caprellid amphipods (Crustacea). Biological Bulletin 156:169–178
  51. a b c Enequist, P. 1949. Studies on the soft-bottom amphipods of the Skagerak. Zoologische Bidrag Fran Uppsala 28:297–492.
  52. Hargrave, B.T. 1972. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limnology and Oceanography 17:583–596.
  53. Paterson, D.M. 1989. Short term changes in the erodibility of intertidal cohesive sediments related to the migratory behaviours of epipelic diatoms. Limnology and Oceanography 34:223–234.
  54. Rice, D.L. 1982. The detritus nitrogen problem: new observations and perspectives from organic geochemistry. Marine Ecology Progress Series 9:153–162.
  55. Burdige, D.J. 2006. Geochemistry of marine sediments. Princeton University Press, Princeton, NJ.
  56. Dauwe, B., J.J. Middleburg, P. Van Rijswijk, J. Sinke, P.M.J. Herman, and C.H.R. Heip. 1999. Enzymatically hydrolyzable amino acids in North Sea sediments and their possible implication for sediment nutritional values. Journal of Marine Research 57:109–134.
  57. Pace, M.C., and K.R. Carman. 1996. Interspecific differences among meiobenthic copepods in the use of microalgal food resources. Marine Ecology Progress Series 143:77–86.
  58. De Troch, M., M.B. Steinarsdottir, V. Chepurnov, and E. Olafsson. 2005. Grazing on diatoms by harpacticoid copepods: species-specific density-dependent uptake and microbial gardening. Aquatic Microbial Ecology 39:135–144.
  59. Marcotte, B.M. 1986. Sedimentary particle sizes and the ecological grain of food resources for meiobenthic copepods. Estuarine, Coastal and Shelf Science 23:423–427.
  60. Atkinson, R.J.A., P.G. Moore, and P.J. Morgan. 1982. The burrows and burrowing behaviour of Maera loveni (Crustacea: Amphipoda). Journal of Zoology, London 198:399–416.
  61. Thiel, M., S. Sampson, and L. Watling. 1997. Extended parental care in two endobenthic amphipods. Journal of Natural History 31:713–725.
  62. Robertson, J.R., and S.Y. Newell. 1982. Experimental studies of particle ingestion by the sand fiddler crab Uca pugilator (Bosc). Journal of Experimental Marine Biology and Ecology 59:1–21.
  63. Vogel, F. 1984. Comparative and functional morphology of the spoon-tipped setae on the second maxillipeds in Dotilla Stimpson, 1858 (Decapoda, Brachyura, Ocypodidae). Crustaceana 47:225–234.
  64. Garm, A., and L. Watling. 2013. The crustacean integument: setae, setules, and other ornamentation. Pages 167–198 in L. Watling, and M. Thiel, editors. Natural history of the Crustacea, Vol. 1: functional morphology and diversity. Oxford University Press, New York.
  65. Fielder, D.R. 1970. The feeding behaviour of the sand crab Scopimera inflata (Decapoda, Ocypodidae). Journal of Zoology, London 160:35–49.
  66. Takeda, S., and M. Murai. 2004. Microhabitat use of the soldier crab Mictyris brevidactylus (Brachyura: Mictyridae): interchangeability of surface and subsurface feeding through burrow structure alternation. Journal of Crustacean Biology 24:327–339.
  67. Takagi, K.K., P. Cherdsukjai, I. Minura, Y. Yano, K. Adulyanukosol, and M. Tsuchiya. 2010. Soldier crab (Dotilla myctiroides) distribution, food resources and subsequent role in organic matter fate in Ao Tang Khen, Phuket, Thailand. Estuarine, Coastal and Shelf Science 87:611–617.
  68. a b c Griffis, R.B., and T.H. Suchanek. 1991. A model of burrow architecture and trophic modes in thalassinidean shrimp (Decapoda: Thalassinidea). Marine Ecology Progress Series 79:171–183.
  69. Zimmer, M. 2008. Detritus. Pages 903–911 in S.E. Jorgensen and B.D. Fath, editors. Encyclopedia of ecology. Elsevier, The Netherlands.
  70. Sainte-Marie, B., and D. Chabot. 2002. Ontogenetic shifts in natural diet during benthic stages of American lobster (Homarus americanus), off the Magdalen Islands. Fisheries Bulletin 100:106–116.
  71. Brousseau, D.J., and J.A. Baglivo. 2005. Laboratory investigations of food selection by the Asian Shore Crab, Hemigrapsus sanguineus: algal versus animal preference. Journal of Crustacean Biology 25:130–134.
  72. Leber, K.M. 1983. Feeding ecology of decapod crustaceans and the influence of vegetation on foraging success in a subtropical seagrass meadow. Dissertation, Florida State University, Tallahassee, Florida, USA.
  73. Werner, E.E., and Gillian, J.F. 1984. The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics 15:393–425.
  74. Smith, K.L., and R.J. Baldwin. 1982. Scavenging deep-sea amphipods: effects of food odor on oxygen consumption and a proposed metabolic strategy. Marine Biology 68:287–298.
  75. Hessler, R.R., C.L. Ingram, A. Aristides Yayanos, and B. Burnett. 1978. Scavenging amphipods from the floor of the Philippine trench. Deep Sea Research 25:1029–1047.
  76. Jones, E.G., M.A. Collins, P.M. Bagley, S. Addison, and I.G. Priede. 1998. The fate of cetacean carcasses in the deep sea: observations on consumption rates and succession of scavenging species in the abyssal north-east Atlantic Ocean. Proceedings of the Royal Society of London B: Biological Sciences 265:1119–1127.
  77. Burkepile, D.E., J.D. Parker, C.B. Woodson, H.J. Mills, J. Kubanek, P.A. Sobecky, and M.E. Hay. 2006. Chemically mediated competition between microbes and animals: microbes as consumers in food webs. Ecology 87:2821–2831.
  78. Smith, C.R., and A.R. Baco. 2003. Ecology of whale falls at the deep-sea floor. Oceanography and Marine Biology: An Annual Review 41:311–354.
  79. a b Luppi, T.A., E.D. Spivak, and K. Anger. 2001. Experimental studies on predation and cannibalism of the settlers of Chasmagnathus granulata and Cyrtograpsus angulatus (Brachyura: Grapsidae). Journal of Experimental Marine Biology and Ecology 265:29–48.
  80. a b Lau, C.J. 1987. Feeding behavior of the Hawaiian slipper lobster, Scyllarides squammosus, with a review of decapod feeding tactics on molluscan prey. Bulletin of Marine Science 41:378–391.
  81. Taylor, G.M. 2000. Maximum force production: why are crabs so strong? Proceedings of the Royal Society of London B: Biological Sciences 267:1475–1480.
  82. Burch, A., and R. Seed. 2000. Foraging behaviour of Carcinus maenas on Mytilus edulis: the importance of prey presentation. Journal of the Marine Biological Association of the UK 80:799–810.
  83. Caldwell, R.L., and M.J. Childress. 1990. Prey selection and processing in a stomatopod crustacean. Pages 143–164 in R.N. Hughes, editor. Behavioural mechanisms of food selection (2nd edition). Springer, Berlin, Germany.
  84. Patek, S.N., and R.L. Caldwell. 2005. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus. The Journal of Experimental Biology 208:3655–3664.
  85. Patek, S.N., W.L. Korff, and R.L. Caldwell. 2004. Deadly strike mechanisms of a mantis shrimp. Nature 428:819–820.
  86. Kiørboe, T., A. Andersen, V.J. Langlois, H.H. Jakobsen, and T. Bohr. 2009. Mechanisms and feasibility of prey capture in ambush-feeding zooplankton. Proceedings of the National Academy of Sciences 106:12394–12399.
  87. Browman, H.I., J. Yen, D.M. Fields, J.-F. St. Pierre, and A.B. Skiftesvik. 2011. Fine-scale observations of the predatory behaviour of the carnivorous copepod Paraeuchaeta norvegica and the escape responses of their ichthyoplankton prey, Atlantic cod (Gadus morhua). Marine Biology 158:2653–2660.
  88. Koenemann, S., F.R. Schram, T.M. Iliffe, L.M. Hinderstein, and A. Bloechl. 2007. Behavior of Remipedia in the laboratory, with supporting field observations. Journal of Crustacean Biology 27:534–542.
  89. van der Ham, J.L., and B.E. Felgenhauer. 2007. The functional morphology of the putative injecting apparatus of Speleonectes tanumekes (Remipedia). Journal of Crustacean Biology 27:1–9.
  90. Seed, R., and R.N. Hughes. 1995. Criteria for prey size-selection in molluscivorous crabs with contrasting claw morphologies. Journal of Experimental Marine Biology and Ecology 193:177–195.
  91. Moody, K.E., and R.S. Steneck. 1993. Mechanisms of predation among large decapods crustaceans of the Gulf of Maine Coast: functional vs. phylogenetic patterns. Journal of Experimental Marine Biology and Ecology 168:111–124.
  92. a b Dahl, E. 1979. Deep-sea carrion feeding amphipods: evolutionary patterns in niche adaptation. Oikos 33:167–175.
  93. Caine, E.A. 1975. Feeding and masticatory structures of selected Anomura (Crustacea). Journal of Experimental Marine Biology and Ecology 18:277–301.
  94. Sahlmann, C., T.-Y. Chan, and B.K.K. Chan. 2011. Feeding modes of deep-sea lobsters (Crustacea: Decapoda: Nephropidae and Palinuridae) in Northwest Pacific waters: functional morphology of mouthparts, feeding behaviour and gut content analysis. Zoologischer Anzeiger 250:55–66.
  95. Thurston, M.H. 1979. Scavenging abyssal amphipods from the North-East Atlantic Ocean. Marine Biology 51:55–68.
  96. Shulenberger, E., and R.R. Hessler. 1974. Scavenging abyssal benthic amphipods trapped under oligotrophic central North Pacific Gyre waters. Marine Biology 28:185–187.
  97. «Glossário - Diretoria de Geologia (Mineropar) - Instituto de Terras, Cartografia e Geologia do Paraná-ITCG». www.mineropar.pr.gov.br. Consultado em 19 de junho de 2019 

Ligações externas[editar | editar código-fonte]