Equação diferencial

Origem: Wikipédia, a enciclopédia livre.
Soluções de uma equação diferencial (a negro) e as respectivas condições iniciais (a vermelho).

Em matemática, uma equação diferencial é uma equação cuja incógnita é uma função que aparece na equação sob a forma das respectivas derivadas. Dada uma variável x, função de uma variável y, a equação diferencial envolve, x, y, derivadas de y e eventualmente também derivadas de x.[1] Por exemplo:

Equações diferenciais têm propriedades intrinsecamente interessantes como:

  • solução pode existir ou não.
  • caso exista, a solução é única ou não.

A ordem da equação diferencial é a ordem da derivada de maior grau que aparece na equação.[1] A solução de uma equação diferencial de ordem n, conterá n constantes.[1]

As equações diferenciais são usadas para construir modelos matemáticos de fenómenos físicos tais como na dinâmica de fluidos e em mecânica celeste. Deste modo, o estudo de equações diferenciais é um campo extenso na matemática pura e na matemática aplicada.

As equações diferenciais têm inúmeras aplicações práticas em medicina, engenharia, química, biologia e outras diversas áreas do conhecimento. As soluções destas equações são usadas, por exemplo, para projetar pontes, automóveis, aviões e circuitos elétricos.

Tipos

As equações diferenciais dividem-se em dois tipos:

Exemplos

Equações diferenciais são extremamente importantes para as ciências, pois nos informam como a variação de uma grandeza afeta outras grandezas relacionadas. A lei mais importante de Física Clássica, a segunda lei de Newton:

é na verdade uma equação diferencial de segunda ordem:

Equações diferenciais fazem parte de nosso dia a dia, mesmo que não nos demos conta disto.

No entanto, as equações diferenciais são mais difíceis de resolver do que as equações algébricas comuns. À exceção das equações separáveis, a resolução de cada tipo diferente de equação sem que se conheça a técnica é uma obra homérica. Por isso, cada avanço no campo das equações diferenciais em geral é creditado a um matemático diferente (exceto por Leonhard Euler).

Exemplo II

Mostrando que as funções

são soluções da equação diferencial e dos métodos numéricos após as únicas bidimensionais da resolução.

Resolução por simples substituição da função e as suas derivadas vê-se facilmente que cada uma das funções dada é solução[3]:

Exemplo III

Demonstre que a relação

é solução implícita de

Resolução:

Classificação

Equações de primeira ordem

As equações diferenciais ordinárias de primeira ordem são da forma mas geralmente por meio de simples manipulação algébrica conseguem-se re-escrever na forma de uma ou mais equações:

A chamada forma inversa da equação anterior é

Qualquer solução implícita de uma das duas equações é solução da outra, e se a inversa de uma solução explícita da primeira equação existir, será solução () da equação inversa. A equação pode ser também escrita na chamada forma diferencial.[3]

Existem em geral muitas soluções de uma equação diferencial de primeira ordem. Dado um valor inicial é possível calcular a derivada no ponto (igual a segundo a equação diferencial), e geralmente é possível encontrar uma curva (curva integral) que passe pelo ponto e com derivada igual a em cada ponto. O problema de valores iniciais:

consiste em encontrar a curva integral (ou curvas integrais) que passa pelo ponto [3]

Existência e unicidade da solução

As condições suficientes para a existência de uma solução única de uma equação diferencial de primeira ordem são definidas pelo teorema de Picard:

Teorema de Picard

Considere o problema de valor inicial

se a função e a derivada parcial de em função de são contínuas numa vizinhança do ponto existe uma solução única em certa vizinhança do ponto que verifica a condição inicial

O intervalo onde existe a solução única pode ser maior ou menor que o intervalo onde a função e a sua derivada parcial são contínuas (o teorema não permite determinar o tamanho do intervalo).[3]

As condições do teorema de Picard são condições suficientes, mas não necessárias para a existência de solução única. Quando ou a sua derivada parcial não sejam contínuas, o teorema não nos permite concluir nada: provavelmente existe solução única a pesar das duas condições não se verificarem.

Exemplo

Demonstre que a relação

onde é uma constante positiva, é solução implícita da equação

o que pode se concluir a partir do teorema de Picard?

Resolução:

a função e a sua deriavada parcial são contínuas em quaisquer pontos fora do eixo dos A solução implícita dada conduz às soluções únicas:

no intervalo O teorema de Picard nada permite concluir nos pontos mas segundo o resultado obtido acima vemos que em cada ponto existem duas soluções, e [3]

Lista de equações diferenciais

Referências

  1. a b c Mendelson, Elliot; Ayres Jr, Frank. Teoria e problemas de cálculo. [S.l.]: Bookman. ISBN 9788560031092 
  2. Santos, José Dias dos; Zanomi Carvalho da Silva (2006). Métodos Numéricos. [S.l.]: Editora Universitária UFPE. ISBN 9788573153255 
  3. a b c d e [Equações Diferenciais e Equações de Diferenças. Porto: Jaime E. Villate, 26 de Abril de 2011. 120 págs]. Creative Commons Atribuição-Partilha (versão 3.0), Acesso em 13 julho. 2013.

Ver também